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A numerical model was developed to simulate the gas nitriding of Fe-M binary alloys. The suggested model takes into account
the nitrogen diffusion in the compound layer and in the diffusion zone as well as the displacement of the (�’/
) interface. The
precipitation of fine MN nitrides in the diffusion zone was also considered during the modelling. A numerical resolution of the
problem was done with the front-tracking method via the finite-difference technique. The model was capable of predicting the
growth of the �’-compound layer and also the nitrogen-depth profile.
In order to validate the model, the compound-layer thicknesses obtained with the simulation were compared with those obtained
experimentally for the nitrided Fe-Cr binary alloys. Good concordance between the numerical results and the experimental data
was noticed.
Keywords: gas nitriding, modelling, compound layer, front-tracking method

Razvit je bil numeri~ni model za simulacijo plinskega nitriranja binarnih zlitin Fe-M. Predlagani model upo{teva difuzijo du{ika
v spojinski plasti in tudi v difuzijski plasti, kot tudi premik stika (�’/
). Model upo{teva tudi izlo~anje drobnih MN-nitridov v
difuzijski coni. Numeri~na re{itev problema je bila izvr{ena z uporabo metode sledenja fronte z uporabo tehnike kon~nih
diferenc. Model je sposoben predvidevanja rasti �’ spojinskega sloja in tudi profila du{ika v globino.
Za oceno modela je bila pri simulaciji dobljena debelina spojinske plasti primerjana z eksperimentalno dobljeno debelino pri
nitriranih binarnih zlitinah Fe-Cr. Ugotovljeno je dobro ujemanje med numeri~nimi rezultati in eksperimentalnimi podatki.
Klju~ne besede: nitriranje v plinu, modeliranje, spojinski sloj, metoda sledenja fronte

1 INTRODUCTION

Gas nitriding is a thermochemical process in which
nitrogen atoms diffuse into the material surface after the
dissociation of ammonia gas. The nitriding temperature
varies between 500 °C and 600 °C with the time duration
ranging from a few hours to a few days.

After this treatment, the nitride layers are formed and
we can distinguish a compound layer and a diffusion
zone. The compound layer, also called the white layer,
generally contains two sublayers: the �’ phase, mainly
composed of iron nitride (Fe4N) and the � phase as
Fe2N1–x. The thickness of the compound layer can reach
a value of 50 μm. Beneath the compound layer, the
diffusion zone can extend up to a depth of 1200 μm. For
binary alloys, the diffusion zone is a ferrite which
contains atomic nitrogen dissolved interstitially, with
dispersed fine metallic nitrides of the MN type where M
is a nitride-forming element. This diffusion zone is
responsible for increasing the resistance to fatigue
observed after nitriding.

The main objective of modelling nitriding is to
quantitatively describe different phenomena occurring
during the gas-nitriding treatment. Several models1–7

were reported in the literature, describing the nitriding

process for iron alloys and steels. These models allowed
the prediction of the nitriding kinetics and microstructure
of the nitrided zone.

Most of these models focus on the diffusion zone, in
which nitrogen diffusion takes place simultaneously with
the precipitation of the nitrides of the MN type (where M
is an alloying element). In the case of steels, the presence
of carbides and carbonitrides was also considered in the
modelling5 on the basis of the appropriate thermodyna-
mic data.

However, these models did not take into account the
presence of the compound layer, despite the fact that the
formation of this layer has an important influence on the
properties of a nitrided material. Indeed, the white layer
can lead to a significant improvement in tribological and
anti-corrosion properties8. In the case of the nitriding of
steels, it has been shown that the microstructure of the
compound layer has an influence on the hardening depth
in the diffusion zone9. With respect to these considera-
tions, it is interesting to include this layer in the
modelling.

The prediction of the nitriding process including
several phases (�, �’ and 
) was already achieved for the
case of nitrided pure iron. This modelling was performed
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analytically and reported on in10–13, while the numerically
performed modelling was described in14–18. However, a
corresponding model of nitriding a multi-component
system, such as Fe-M binary alloys and steels, is not yet
available.

The main objective of the present work is to present
such a model, relating to the gas nitriding of a Fe-M
binary alloy. However, the numerical approach
developed in the present work only deals with a single
compound layer consisting of �’ nitride.

2 MATHEMATICAL FORMULATION OF THE
MODEL

During the gas nitriding of pure iron and binary
alloys or even steels, the formation of the compound
layer depends on the operating parameters, particularly,
the nitriding potential rN (see references15,16 for further
details). In fact, three configurations are possible:

• the absence of the compound layer (and therefore the
treatment is completed in the ferritic phase)

• the compound zone with a single-phase �’
• the compound zone with a dual-phase (�/�’).

In the present work, the aim was to simulate the
nitriding process with the presence of only �’ in the
compound zone. Therefore, the chosen value of rN must
correspond to this configuration according to the Lehrer
diagram16.

During the nitriding treatment, if the thermodynamic
conditions are satisfied, �’ precipitates appear in the
vicinity of the external surface if the solubility limit of
nitrogen in ferrite is reached. Thereafter, the �’ phase
tends to grow at the expense of the ferrite. This phase
transformation (
 � �’) involves a displacement of the
(�’/
) interface.

A diffusion problem, with one or more moving
boundaries, is commonly called the Stefan problem. Its
solving is usually performed with the use of one of the
front-tracking methods.

In19–22 several models based on this approach are
presented in order to simulate phase transformations in
metals and alloys. The model presented in20 was imple-
mented in the DICTRA software and used to simulate
the nitriding process in a Fe-N system13,14.

In the present work, a new front-tracking method is
presented considering both the long-range diffusion in
the diffusion zone and the interstitial diffusion of
nitrogen within the iron nitrides. The nitrogen diffusion
takes place simultaneously with the advancement of the
(�’/
) nterface.

It should be noted that the diffusion of heavy
elements (Fe, M) was neglected as the nitrogen diffusion
controls the growth of the compound layer. This hypo-
thesis has already been adopted by several authors1–7.

The main objective of the present model is to simu-
late the growth of the �’ layer at the expense of ferrite.
However, in the diffusion zone, the nitrogen diffusion

occurs simultaneously with the precipitation of MN
nitrides which also affect the growth kinetics of the �’
layer. For this reason, this precipitation phenomenon was
also included in the modelling.

After the �’ phase is precipitated, the problem can be
represented schematically as shown in Figure 1, where
the two phases, �’ and 
, are henceforth adjacent. At any
time t, the position of the interface (�’/
) is represented
by the distance � from the origin (z = 0) which
corresponds to the (�’/gas) interface.

The nitrogen diffusion in each phase is governed by
the Fick’s second law. The system of Equations 1 and 2
can be established in the one-dimensional space as:
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where N�’ and N
 represent, respectively, the nitrogen
concentrations in the �’ and 
 phases. These concen-
trations are expressed as the numbers of moles per unit
volume and they are dependent on the depth (z) and time
(t). The nitrogen amount can also be expressed as a
nitrogen mole fraction (X�’, X
) using the relations:
N X /V� � �’ ’ ’= and N X /V
 
 
= , where V�’ and V
 are the
molar volumes of the two phases that are considered
independent of the compositions. The concentration
may also be converted into mass fractions.

D�’(N�’) and D
(N
) are defined as the nitrogen
diffusion coefficients dependent on the N amount.

During the incremental time dt the interface position
advances with the value of d�. In order to conserve the
number of nitrogen moles and considering the nitrogen
flux arriving at the interface and the nitrogen flux
leaving the interface, the following balance equation can
be established (Equation 3):
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Where v is the interface velocity expressed as v =
d�/dt.

The terms X
�’ and X�’
 are the nitrogen molar frac-
tions at the interface of the two phases, 
 and �’, respec-
tively (refer to Figure 1). It is assumed that the thermo-
dynamic equilibrium is continuously established
between the two phases, 
 and �’ at the considered inter-
face. So, X
�’ and X�’
 can be read from the corresponding
phase diagram.

The diffusion problem with the moving boundaries is
then governed by the set of three partial differential
equations (Equations 1, 2 and 3). The solving of the
problem of interest requires the knowledge of the follow-
ing boundary conditions:

In the external surface (z = 0), the nitrogen concen-
tration in �’ is considered constant (Ns) corresponding to
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the equilibrium between �’ and the gas mixture. There-
fore, at z = 0, N�’(0,t) = Ns, at z = �, N�’(�,t) = N�’
 and
N
(�,t) = N
�’.

For greater depths (i.e., z > 1200 ìm), this zone
corresponds to the non-nitrided core where the nitrogen
amount in the matrix is neglected. Therefore, at z = +�,
N
(�,t) = 0.

3 NUMERICAL SOLVING OF THE PROBLEM

The finite-difference method is used to solve the
problem of the nitrogen diffusion with a moving boun-
dary. For this purpose, the zones occupied by both
phases, �’ and 
, are divided into the cells with thick-
nesses �z�’ and �z
, respectively, as shown in Figure 1.
Two adjacent cells are separated by a node. It is assumed
that at time t, the number of nodes in the �’ phase is n�’

and in 
 it is n
 (the numbers of cells in both phases will
then be (n�’ – 1) and (n
 – 1), respectively).

The thicknesses of all the cells are kept constant
except for the last cell in �’ and the first cell in the 

phase, which are considered as time-dependent during

the simulation process (Figure 1). Indeed, as the inter-
face advances, there is an expansion of the left cell and
shrinkage of the one on the right. By introducing these
two variable cells, it becomes possible to follow the
progress of the �’/
 interface during the numerical
calculation as explained below.

When using the finite-difference method, the time is
also discretized with an equal time step (�t). The solu-
tion is assumed to be known at time t, then it is calcul-
ated at the next time step (t + �t). At the instant t, the
nitrogen concentration in each node is known for both �’
and 
 and so are the sizes of the two variable cells, d�’(t)
and d
 (t).

In order to determine these values at time (t + �t), the
process can be divided in two steps: first, a diffusion step
where the nitrogen diffusion occurs in �’ and 
 by con-
sidering the displacement of the (�’/
) interface.

In the diffusion step, the resolution consists of sepa-
rate solutions of diffusion Equations 1 and 2 in their
corresponding areas. This allows a determination of the
nitrogen concentration profile for the whole nitrided
zone.
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Figure 1: Schematic diagram illustrating the problem of nitriding with the presence of �’as the compound layer. In order to carry out a numerical
resolution, the zone occupied by the two phases, �’ and 
, is divided into small cells. Two adjacent cells are separated by a node also called a grid
point. It is supposed that the number of nodes is equal to n�’ and n
 in the �’ phase and 
 phase, respectively. In order to consider the
displacement of the interface, the thicknesses of the last cell in �’ and the first cell in 
 are considered variable during the process. When the cell
on the right-hand side dilates, the left one shrinks, while the sum (d�’ + d
) remains constant being equal to d.
It should be noted that all the nodes of the grid are immobile, except for the last node in �’ and the first one in 
, which are mobile. At the
interface, the N concentration is kept constant in both phases with the values of N�’
 and N
�’. The corresponding N mole fractions (i.e., X�’
 and
X
�’) can be read from the phase diagram.
Slika 1: Shematski prikaz problema pri nitriranju s prisotnostjo spojinske plasti �’. Za numeri~no resolucijo je bila plast, v kateri sta dve fazi, �’
in 
, razdeljena v majhne celice. Dve sosednji celici sta lo~eni z vozlom oz. to~ko v mre`i. Predvideva se, da je {tevilo vozlov enako n�’ in n
 v
�’-fazi in 
-fazi. Da bi upo{tevali premik sti~ne ploskve, se kot spremenljivki v procesu vzameta debelina zadnje celice v �’ in prve celice v 
.
Medtem ko se celica na desni strani {iri, se na levi o`i. Medtem pa vsota (d�’ + d
) ostaja konstantna in je enaka d.
Treba je omeniti, da so vsi vozli v mre`i nemobilni, razen zadnjega vozla v �’ in prvega v 
, ki sta mobilna. Na stiku je koncentracija N
konstantna v obeh fazah z vrednostima N�’
 in N
�’ Ustrezni molski dele` N (to je X�’
 in X
�’) se prebere iz faznega diagrama.



In order to solve the diffusion equation in �’ using the
finite-difference technique, Equation 1 is rewritten in the
following form:
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When the implicit scheme is used, a relation between
the unknown nitrogen concentrations in three successive
nodes (i – 1, i and i + 1) can be found. This is done sim-
ply by replacing the partial derivatives, which appear in
Equation 4, with their corresponding finite diffe-
rences23,24. The following relation can be established:

A N i t ti � �’ ( , )− +1 + B N i t ti � �’ ( , )+ + C N i t ti � �’ ( , )+ +1 =
= N i t�’ ( , ) 2 � i � n�’ – 2 (5)

The values for Ai, Bi and Ci are obtained with the
following expressions:
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Obviously, the diffusion coefficient D�’ changes along
the depth, so the term D�’(i) corresponds to its value at
the node i. The variation of the diffusion coefficient in �’
with the nitrogen amount is described in Appendix 1.

Equation 5 is valid for a regular meshing with the
same cell size, �z�’. However, in the vicinity of the �’/

interface, due to the presence of the variable cell, the
mesh is irregular. Therefore, the relation between the N
concentrations in the last three nodes in �’is not given by
Equation 5. An equivalent equation can be obtained by
replacing partial derivatives with finite differences in
Equation 4 as follows:
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By substituting these relations (6 to 9) in Equation 4,
Equation 10 can be obtained as follows:
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Equations 5 and 10 represent a set of (n�’ – 2) equat-
ions with (n�’ – 2 ) unknowns. In order to determine the
nitrogen concentrations in the nodes at time (t + �t) this
set of equations must be solved using the tridiagonal
matrix algorithm (TDMA)23.

The same analysis can be applied for the numerical
solution of the diffusion equation in the ferritic phase
(Equation 2). However, it was shown in several referen-
ces15–18 that the dependence of the diffusion coefficient
on the composition of ferrite is weak. So, in the present
paper, a constant value for diffusivity is adopted and
noted as D
.

The following relation can be established for the first
three nodes in the ferritic phase (irregular mesh, similar
to Relation 10):
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For the other nodes (for i = 2 to n
 – 1) a relationship
similar to (5) can be given:
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As for the �’ phase, the resolution of the set of
Equations 11 and 12 indicates the nitrogen concentration
in each node of the ferritic phase at time (t + �t).

4 CONSIDERING THE DISPLACEMENT OF
THE (�’/�) INTERFACE

After the diffusion step, the nitrogen concentration in
both phases is modified. The change in the nitrogen pro-
file leads to a displacement of the corresponding inter-
face so that the nitrogen-amount balance is conserved.
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Equation 3 which gives the interface velocity must then
be included into the resolution.

The main feature associated with the present model
and compared to most of the other front-tracking
methods (given, for example, in19–21) is the inclusion of
the diffusion near the interface. The diffusion process
near the interface region was already considered in the
modelling from reference22. In the present work, the
simplest method is used to take this phenomenon into
account. For this purpose, it is supposed that the
interface is governed not only by Relation 3 but also by
Diffusion Equations 1 and 2. In fact, near the interface,
the three partial differential equations, 1, 2 and 3, are
solved simultaneously.

The technique used in the resolution consists of
replacing the partial derivatives with their finite diffe-
rences. But at this time, the sizes of variable cells are
time-dependent and are still unknown at t + �t.

For example, to get the diffusion equation for �’, in
the finite-difference form near the interface, (according
to an implicit scheme), we simply substitute Relations 6
to 9 into 4 given that the term d�’ is considered at the
time t + �t and not at t. The following equation can be
obtained:
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It should be noted that this relationship is similar to
10, but in this case d�’ is still unknown at the (t + �t)
instant.

Similarly, the diffusion Equation 2 can be written
near the interface as finite differences. Then the follow-
ing relation can be established:
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The thickness of the shrinking cell d
 (t + �t) is not
an independent variable, but it is related to d�’(t + �t)
with the following relation (Figure 1):

d t t d d t t
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By substituting Equation 15 into 14, the discrete form
of Equation 2 can be given near the interface as follows:
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Finite differences are also determined in the case of
Equation 3 and the following relations can then be
written:
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In order to write the derivative d�/dt as a finite
difference, it is worth noting that the change in the
position of the interface is related only to the change in
the expanding cell size. So, the following relation can be
written:
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Substituting these three last relations (17, 18 and 19)
into Equation 3, the following relation can be obtained:
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The above analysis has finally led to the set of three
nonlinear equations (13, 16 and 20) with the following
unknowns: d�’(t + �t), N�’(n�’ – 1,t + �t) and N�’(2,t + �t).
So, after the diffusion step, the consideration of the
interface displacement is performed by solving this set of
equations in order to determine the corresponding
unknowns. The resolution requires the use of an iterative
algorithm with the Newton-Raphson method.

Once the resolution is achieved (i.e., d�’(t + �t) is
calculated), the interface position at the time (t + �t) can
be determined from Equation 21:

� � � �( + Δ ( ( + Δ (t t t d t t d t) ) ) )’ ’= + − (21)

The term �� = d�’(t + �t) – d�’(t) represents the
advancement of the interface during a time step.

The thickness of the shrinking cell is also calculated
by using Relation 15.

R. KOUBA, M. KEDDAM: NUMERICAL PREDICTION OF THE COMPOUND LAYER GROWTH ...

Materiali in tehnologije / Materials and technology 49 (2015) 1, 43–53 47



The two steps of the resolution (i.e., the nitrogen
diffusion and the interface displacement) are afterwards
repeated for the next time step.

It should be mentioned that the nitrogen concen-
tration in the first neighbouring nodes of the interface
(i.e., N�’(n�’ – 1,t + �t) and N�’(2,t + �t) is computed in
both diffusion step and interface-displacement step. For
the next time step, only the values resulting from the
interface-displacement analysis are retained.

During the simulation process, there is an expansion
of the left cell and shrinkage of the one on the right.
However, this process cannot continue indefinitely and
the remeshing may become necessary if d�’ is too large or
d
 becomes too small. So, the two following criteria have
been adopted: The expanding cell splits into two cells if
its size becomes 1.5 times greater than the original size.
This division is performed by inserting a new node
inside the cell. The nitrogen concentration in the new
node is obtained with a linear interpolation from the
concentration in the neighbouring nodes. Similarly, if the
shrinking cell reaches half of its original size, a grid
point is removed from 
 in order to increase d
 to its
initial value. It can be seen that when the simulation
process is performed, there is a creation of nodes and
cells in phase �’ and a disappearance of others in 
.

5 APPLICATION OF THE MODEL FOR THE
NITRIDED Fe-M BINARY ALLOYS

In fact, the configuration presented in Figure 1 does
not appear at the first instant at the beginning of the
nitriding process, but there is a period of nitrogen
enrichment in the ferrite which precedes the formation of
the compound layer.

This incubation time is more important when the M
alloying element is present in the ferritic matrix because
of the consumption of a large amount of nitrogen in the
MN nitride precipitation. In addition, if the nitriding
potential rN is not too high, as assumed in the present
work, the incubation time is even longer25. For these
reasons, the early stage of the process, which takes place
completely in the ferritic phase, must be considered.

Before the �’ formation, the diffusion of nitrogen is
carried out exclusively in the ferrite zone according to
Equation 2. In this case, at z = 0, there is a ferrite/gas
contact. The transfer of nitrogen from the gas mixture to
the metal is expressed with the following relationship:

At z = 0,

[ ]− = −
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D
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K N N t

z






�


 
 


∂
∂ eq ( , )0 (22)

Equation 22 is obtained by considering a thermo-
dynamic equilibrium between the solid (the 
 phase) and
the gas mixture. The term Neq
 indicates the nitrogen
concentration in ferrite at the thermodynamic equili-
brium between 
 and the gas mixture. N
(0,t) represents
the actual concentration at the surface and K
 is the

kinetic constant. Equation 22 is regarded as an external
boundary condition when solving the diffusion problem
in the preliminary stage.

The nitriding process during the preliminary stage
can be regarded as the nitrogen diffusion in one phase
(ferrite) coupled to the precipitation of fine MN nitrides.
The details of the calculation procedure are given in1.
After the diffusion step which causes a modification of
the nitrogen profile, a test of the MN precipitation is
realized at each depth using the solubility-product
method. So, the amount of the nitrogen precipitated as
MN and the quantity which remains dissolved in the
ferrite can be calculated. It is also possible to determine
the proportion of M consumed by the precipitation and
the residual part dissolved in the matrix1.

The nitrogen transfer from the gas mixture to the
sample, according to Equation 22, means that the N
concentration in the ferrite at z = 0 increases with time.
The formation of �’ takes place when the surface concen-
tration reaches the solubility limit of the nitrogen in
ferrite. Therefore, the condition of the precipitation of �’
on the top of 
, at z = 0, is satisfied if: N
 (0,t) � N
�’.
This test is performed for each time step during the
calculation process in the preliminary stage.

It should be noted that the kinetic considerations
related to the �’ nucleation have been neglected which
makes the formation of the compound layer take place as
soon as the nitrogen solubility limit is reached.

Subsequently, a small �’ layer with a thickness not
exceeding 0.1 μm is inserted at the top of the first cell of

 having an initial thickness of 1 μm.

The introduction of a small thickness of the �’ layer
is the beginning of the diffusion problem with a moving
boundary. Thereafter, the front-tracking solving process
is conducted as explained in detail in Sections 3 and 4.

However, when solving a diffusion problem with
moving boundaries for binary alloys, there is not just the
nitrogen diffusion in the phase (ferrite) on the right, but
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Figure 2: Schematic diagram illustrating a full simulation of nitriding
Fe-Cr alloys. The diagram shows the formation of CrN precipitates
and evolution of the variable cell size: a) during the early stage, b)
after the formation of the compound layer (at time t1), c) for a time
t2 > t1
Slika 2: Shematski prikaz polne simulacije nitriranja zlitin Fe-Cr.
Diagram prikazuje nastanek izlo~kov CrN in razvoj spremenljivke
velikosti celic: a) v za~etni fazi, b) po nastanku spojinske plasti (v
~asu t1), c) za ~as t2 > t1



also the precipitation of MN nitrides which continues to
occur after the �’ formation. The precipitation of MN
nitrides is considered during the simulation in the same
way as in the preliminary stage.

A schematic illustration of a full simulation of the
gas nitriding of Fe-M binary alloys is shown in Figure 2.
A general scheme giving different steps of the calcul-
ation is presented in Figure 3. A computer code written
in the MATLAB language was used to achieve the
numerical resolution and the necessary data for the
implementation of the simulation are presented and
discussed in Appendix 2.

6 SIMULATION RESULT

Before presenting the results of the model for
nitriding Fe-Cr binary alloys, the model was first applied
to a Fe-N binary system. The case of nitriding pure iron
is quite interesting since the analytical solution of the
problem is already available10–12. Therefore, a compa-
rison between the results of the analytical model11 and
those obtained with the present work for Cr % = 0 is
possible. For this purpose, a constant diffusion coeffi-
cient was adopted for �’ instead of the composition-
dependent diffusivity. The same data, used in11, was
adopted for the numerical resolution and the incubation
time was also ignored.

R. KOUBA, M. KEDDAM: NUMERICAL PREDICTION OF THE COMPOUND LAYER GROWTH ...

Materiali in tehnologije / Materials and technology 49 (2015) 1, 43–53 49

Figure 4: Results given by the model for the nitriding of Fe – 1 % Cr
binary alloy for the given nitriding conditions: T = 550 °C, rN = 0.7
bar–1/2, time = 16 h: a) nitrogen-concentration profile for the com-
pound layer and the beginning of the diffusion zone, b) profile of
nitrogen inside the compound layer, c) total nitrogen profile for the
diffusion zone
Slika 4: Rezultati, ki jih da model za nitriranje binarne zlitine Fe –
1 % Cr v danih razmerah nitriranja: T = 550 °C, rN = 0,7 bar–1/2, tra-
janje = 16 h: a) profil koncentracije du{ika v spojinski plasti in za~etek
difuzijske cone, b) profil koncentracije du{ika v spojinski plasti, c)
skupni profil du{ika v difuzijski coni

Figure 3: Flow chart showing a global scheme of the simulation of the
nitriding process
Slika 3: Diagram prikazuje celotno shemo simulacije poteka postopka
nitriranja



It is noticed that the numerical solution converges
towards the analytical one provided that the spatial and
temporal discretization steps are as small as possible.
Indeed, the following parameters (�z�’ = 0.1 μm, �z
 =
0.1 μm and �t = 0.1 s) provide a good accuracy. These
parameters were adopted for all the numerical calcul-
ations done in the present study. A good agreement
between the numerical and analytical results represents,
in fact, the first step in the validation of the model.

Figure 4a shows the simulated nitrogen-concen-
tration profiles through the �’ layer and the beginning of
the diffusion zone obtained after nitriding the Fe – 1 %
Cr binary alloys (for the following conditions: T = 550
°C, KN = 0.7 bar–1/2 and t = 16 h).

For the compound layer, despite the narrow com-
position range, Figure 4b shows that the profiles are not
linear, in contrast to the assumption made in15.

Figure 4c shows the total nitrogen profile within the
diffusion zone. The major part of nitrogen is in the form
of the CrN precipitate. The results are the same as those
obtained in1.

In this last reference1, the experimental nitrogen
profile fits well with the simulation results despite the
fact that some aspects of the problem were not taken into
account (for example, the nitrogen excess and the
nucleation and growth kinetic of the formation of MN
precipitates). These considerations can be seen as part of
the validation of the present model with respect to the
diffusion zone as long as the same solubility product
KCrN is used.

Figure 5 shows, for the same alloy and for two diffe-
rent temperatures (520 °C and 550 °C) the evolution of
simulated compound-layer thickness versus time. In this
figure, it is possible to deduce the corresponding values
of incubation times, and to confirm the parabolic regime
of the growth law of the �’ layer.

In the same figure, the growth of the �’ layer in the
case of the Fe-N system (w(Cr) = 0 %) is also presented.

It can be seen that the presence of alloying element
Cr slows down the growth of the compound layer. This
result can be attributed to the CrN precipitation. Indeed,
on the one hand, the precipitation reaction near the outer
surface during the preliminary phase delays the forma-
tion of iron nitrides by increasing the corresponding
incubation time. On the other hand, the CrN precipitation
accentuates the nitrogen concentration gradient in the
ferrite near the interface (on the right-hand side) because
of the consumption of a large amount of nitrogen
initially dissolved in the ferrite. Thereafter, the nitrogen
flux leaving the interface is increased which leads to a
reduction in the interface velocity.

7 EXPERIMENTAL VALIDATION OF THE
MODEL

In order to validate the model, nitriding experiments
were carried out on the Fe – 1 % Cr binary alloy. The
measurements of the compound-layer thicknesses were
subsequently realized with the purpose of comparing
them with the simulated results.

The samples of the Fe – 1 % Cr alloy were gas
nitrided in the laboratory nitriding furnace at 520 °C and
550 °C during different treatment times for the same
nitriding potential (KN = 0.7 bar–1/2). The identification of
the phases formed after nitriding was performed using
X-ray diffraction. The measurements of the thicknesses
were performed using a scanning electron microscope at
different locations of the cross-sections of the nitrided
samples. The mean value of the compound-layer thick-
ness was then taken from different measurements.

Figure 6 shows a micrograph of the nitrided zone,
where one can distinguish the compound layer and the
beginning of the diffusion zone. Figure 7 shows the
X-ray diffraction pattern of the gas-nitrided sample at T
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Figure 5: Comparison between the �’ layer thicknesses obtained with
the model (curve) and those measured experimentally (marks) for rN =
0.7 bar–1/2

Slika 5: Primerjava med debelino plasti �’, dobljene z modelom (kri-
vulja) in eksperimentalno izmerjene (to~ke) pri rN = 0,7 bar–1/2

Figure 6: SEM micrograph of the cross-section of nitrided Fe – 1 %
Cr alloy for the nitriding conditions: (T = 550 °C, t = 10 h, KN = 0.7
bar–1/2)
Slika 6: SEM-posnetek prereza nitrirane zlitine Fe – 1 % Cr pri raz-
merah nitriranja: (T = 550 °C, t = 10 h, KN = 0,7 bar–1/2)



= 550 °C during 10 h of treatment. It can be seen that the
detected phase includes �’nitride and ferrite with no CrN
which is probably due to its small fraction. It can also be
seen that the nitriding conditions did not allow the
formation of � nitride.

The comparison between the experimental values of
the �’ layer thicknesses and those calculated by the
model is shown in Figure 5. It can be seen that there is
good agreement between the experimental thicknesses
and the simulated ones. This comparison leads to the
conclusion that the model predicts, in a good way, the
growth kinetics of the compound zone.

8 FURTHER POSSIBILITIES OF THE MODEL

The model provides good results concerning the
growth of the compound layer, at least for the considered
range of nitriding conditions and for low concentrations
of the Cr alloying element. The model can be extended
to perform a bilayer configuration (�/�’) of the com-
pound zone. The model can also be extended to simulate
the nitriding of alloyed steel.

This requires a method for handling, the presence of
several alloying elements with the possibility of different
types of MN precipitates. The modeling of nitriding
steels necessitates, especially, the consideration of the
carbon element which brings significant changes to the
microstructure before and during nitriding.

For example, it is reported in several studies5,26 that
the alloyed carbides transform into nitrides or carboni-
trides during the process and that the nitrogen interstitial
diffusion is accelerated by that of carbon.

One of the solutions that can be adopted to simulate
the nitriding of steels is to combine the present model
with a thermodynamic model using the CALPHAD
approach as shown in5 for the diffusion zone.

If the present model is interfaced with appropriate
thermodynamic and kinetic data (resulting from thermo-
dynamic calculations) it becomes a more complete
model for the nitriding of steels. Such a model is able to
predict nitrogen profiles in the diffusion zone and also in
the compound layer.

Furthermore, the present model can be extended to
study other processes involving moving boundaries, such
as phase transformations and solidification. The model
can even be extended to consider a case of a multicom-
ponent system where several elements are able to diffuse
as reported in20–22. However, it requires the use of a
comprehensive thermodynamic description necessary to
determine different diffusivities and chemical potentials
required for handling a diffusion process. However, in
the present work, the model was restricted to the
simulation of a nitriding process for binary alloys.

9 CONCLUSION

A numerical model for a simulation of the gas
nitriding of Fe-M binary alloys is presented. The model
takes into account both the diffusion precipitation in the
diffusion zone and the nitrogen within the iron nitride �’,
also considering the (�’/
) interface displacement. The
diffusion problem with a moving boundary formulated in
this way is solved through the front-tracking approach.
Because of the presence of the M alloying element, the
model also considers the precipitation of the MN nitrides
in the diffusion zone. The numerical solving was
achieved using the finite-difference method via an
implicit scheme.

The numerical resolution allows a determination of
the nitrogen profile along the depth as well as the inter-
face position which makes it possible to follow the
growth kinetics of the compound layer. There is a good
concordance between the numerical calculations and the
experimental results in the case of nitriding the Fe – 1 %
Cr alloy.

Despite the fact that the model is limited to the case
of a monolayer compound zone, it can be used as a tool
for controlling the nitriding process and optimizing the
desired properties.

Moreover, the applicability of the model can be ex-
tended to simulate the nitriding of steels using an appro-
priate thermodynamic and kinetic database in the
simulation.

APPENDIX 1: VARIATION IN THE DIFFUSION
COEFFICIENT IN �’ WITH THE COMPOSITION

The implementation of the model requires a determi-
nation of the dependence of the intrinsic diffusion
coefficient on the nitrogen amount in the �’ phase. On
the basis of thermodynamic and kinetic considerations,
the following expression can be established:
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Figure 7: X-ray diffraction pattern of the surface of gas-nitrided Fe –
1 % Cr alloy at T = 550 °C during 10 h of treatment
Slika 7: Rentgenska difrakcija povr{ine plinsko nitrirane zlitine Fe –
1 % Cr 10 h pri T = 550 °C
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During the gas nitriding process with the presence of

a gas mixture (NH3/H2), it is assumed there is a thermo-
dynamic equilibrium between the solid (�’) and the
atmosphere. It was shown that the activity of nitrogen is
proportional to the nitriding potential of rN = PNH3/PH2
15,16. The thermodynamic factor can then be rewritten as
follows:
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Using the absorption-isotherm theory, Somers et al.15

gave the relation between the nitrogen amount in �’and
the nitriding potential, expressed with the following
equation:
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where yN,�’ is the nitrogen amount expressed as a site
fraction. The meanings and values of the constants
appearing in A3 are given in the same reference15. In
order to obtain the nitrogen concentration (the number
of moles per volume), the following relationship can be
used:
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For each composition, Relations A3 and A4 can be
combined and derived in order to calculate the thermo-
dynamic factor � (according to A2) and then the corres-

ponding diffusivity (according to A1). In this way, the
composition dependence of diffusivity was taken into
account in the model and implemented as explained
above.

Figure 8 shows the evolution of the diffusion coeffi-
cient D�’ versus the mass fraction of N, at T = 550 °C and
rN = 0.7 bar–1/2. A strong dependence on the concentra-
tion can be observed.

APPENDIX 2: DATA USED IN THE
SIMULATION

The data required for the simulation are gathered in
Table 1.1,13,15,16,18,27 It is worth noting that when consi-
dering the nitrogen concentrations in both the external
surface (Ns) and at the interface (N�’
, N
�’), the Fe-N
binary phase diagram was used instead of an isothermal
section of the Fe-N-Cr phase diagram.

Table 1: Different constants used for implementing the model with
their source references
Tabela 1: Razli~ne konstante, uporabljene v modelu in reference
njihovega izvora

Constant Value at 520 °C Value at 550 °C References
K
/(cm/s) 5.3332 E–6 7.6047 E–6 27

w(Neq
)/% 0.1807 0.2742 15,16

w(Ns)/% 5.8630 5.8621 15,16

x(X�’
)/% 0.1973 0.1964 15,16

x(X
�’)/% 0.0026 0.0032 15,16

w(KCrN)/%–2 0.0019 0.0033 1

D
/(cm2/s) 4.9183 E–8 7.5636 E–8 15,16

D�’/(cm2/s) 8.3870 E–12 1.3303 E–11 18

V
/(cm3/mol) 7.14 7.14 13

V�’/(cm3/mol) 8.22 8.22 13

mass fraction, w/%
amount (= mol) fraction, x/%

This was possible because during the preliminary
phase the CrN precipitation near the external surface
consumes practically all the dissolved Cr so that �’
nitride precipitates, thereafter, from the ferrite containing
almost no alloying element. The CrN nitride is thermo-
dynamically stable and assumed to be stoichiometric.
This simplification was already adopted in1.

In addition, in the Fe-N system the boundaries bet-
ween phases were considered as a function of the
nitriding potential instead of the total nitrogen amount.
This phase diagram is called the Lehrer diagram and the
corresponding thermodynamic description can be found
in15,16.
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