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In this article, the author discovers a paradox of balancing chemical equations. The many counterexamples illustrate that the
considered procedure of balancing chemical equations given in the paper1 is inconsistent. A new complex vector method for
paradox resolution is given too.
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V ~lanku avtor opisuje paradoks pri uravnote`enju kemijskih reakcij. Ve~ primerov dokazuje, da je procedura uravnote`enja
kemijskih reakcij v viru 1 inkonsistentna. Predstavljena je nova kompleksna vektorska metoda za re{itev paradoksa.
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1 INTRODUCTION

Balancing chemical equations is a basic matter of
chemistry, if not one of its most important issues, and it
plays a main role in its foundation. Indeed, it is a subtle
question which deserves considerable attention.

Also, this topic was a magnet for a number of
researchers around the world, because the general
problem of balancing chemical equations was considered
as one of the hardest problems in chemistry, as well as in
mathematics.

In chemical literature there are a great number of
papers which consider the problem of balancing
chemical equations in different chemical ways, but all of
them offer only some particular procedures for balancing
simple chemical equations. Very often, these chemical
procedures generate absurd results, because most of
them are founded on presumed chemical principles, but
not on genuine exact principles. And these presumed
chemical principles generate paradoxes! The balancing
chemical equations does not depend on chemical
principles, it is a mathematical operation which is
founded on true mathematical principles.

There is a number of paradoxes in chemistry about
balancing chemical equations, and these will be
systematized and studied in a special article of higher
level by the same author which will appear in the near
future. In this article only one paradox in balancing
chemical equations, discovered in1 is considered.

The author would like to emphasize very clearly, that
balancing chemical equations is not chemistry; it is just

linear algebra. Although it is true, that it is not
chemistry, it is very important for chemistry! In this
particular case the following question comes up: If
balancing chemical equations is not chemistry, then why
is it considered in chemistry? Or maybe more important
is this question: If it is linear algebra, then it should be
studied in mathematics, so why bother chemists?

The author will address the above questions assuming
that: the problem of balancing chemical equations was a
multidisciplinary subject and for its solution both
mathematicians and chemists are needed. The job of
chemists is to perform reactions, while balancing their
equations is a job for mathematicians. Mathematics, as a
servant to other sciences, is a problem solver, but
chemistry is a result user.

The skepticism about balancing chemical equations
by chemical principles appeared a long time ago. Let’s
quote the opinions of three chemists.

In 1926 the American chemist Simons2 wrote: The
balancing of an equation is a mathematical process and
independent of chemistry. The order of steps in the
process is as essential as the order of steps in long
division and the process is much simpler than is ordinary
assumed. Seventy-one years later, the Dutch chemist Ten
Hoor3, made a similar statement: Balancing the equation
of the reaction is a matter of mathematics only.

Now is the right place to paraphrase the criticism of
the American chemist Herndon4: The major changes that
have taken place over seven decades are substitutions of
the terms šchange in oxidation number’ and šalgebraic
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method’ for the terms švalence change’ and šmethod of
undetermined coefficients’, respectively. This assertion
shows very clearly the picture of chemists’ contributions
to balancing chemical equations by chemical principles.
Probably expressing his satisfaction with the chemists’
contributions to balancing chemical equations, Herndon,
the editor of the Journal of Chemical Education4, decided
that further discussion of equation balancing will not
appear in the Journal unless it adds something substan-
tively new to what has already appeared.

In view of the above assertions this question arises:
Are there in chemistry šchemical principles’ capable of
offering solutions of the general problem of balancing
chemical equations? Maybe more interesting is the
question: What are šchemical principles’ – a rhetorical
sophism of chemists or their hopes?

More interesting for us is to give an answer to both
questions from a scientific view point. Perhaps, the more
appropriate short answer to the first question is:
šChemical principles’ are not defined entities in
chemistry, and so this term does not have any meaning.
They are not capable to provide solutions of the general
problem of balancing chemical equations, because they
are founded on an intuitive basis and they represent only
a main generator for paradoxes. However, the necessary
and sufficient conditions for a complete solution of the
general problem of balancing chemical equations lie
outside of chemistry, and we must look for them in an
amalgamated theory of n-dimensional vector spaces,
linear algebra, abstract algebra and topology. It is a
very hard problem of the highest level in chemistry and
mathematics, which must be considered only on a
scientific basis. Like this should look the answer to the
first question.

The answer to the second question will be described
in this way: Actually, šchemical principles’ are a remnant
of an old traditional approach in chemistry, when
chemists were busy with the verification of their results
obtained in chemical experiments. It is true, that until
second half of 20th century there was no mathematical
method for balancing chemical equations in chemistry,
other than Bottomley’s algebraic method5. Chemists
balanced simple particular chemical equations using
only Johnson’s change in oxidation number procedure6,
Simons – Waldbauer – Thrun’s partial reactions
procedure2,7 and other slightly different modifications
derived from them. The šchemical principles’ were an
assumption of traditional chemists, who thought before
the appearance of Jones’ problem8, that the solution of
the general problem of balancing chemical equations is
possible by use of chemical procedures. But, practice
showed that the solution of the century old problem is
possible only by using contemporary sophisticated
mathematical methods.

These questions require a deeper elaboration than
given here, and it will be a main concern of the author in
his future research.

2 PRELIMINARIES

The exact statements about balancing chemical
equations agree with the following well-known results.

Theorem 1. Every chemical reaction can be reduced
in a matrix equation Ax = 0, where A is a reaction
matrix, x is a column-vector of the unknown coefficients
and 0 is a null column-vector.

Proof. The proof of this theorem immediately follows
from9.

Remark 2. The coefficients satisfy three basic prin-
ciples (corresponding to a closed input-output static
model10,11)

• the law of conservation of atoms,
• the law of conservation of mass, and
• the time-independence of the reaction.

Theorem 3. Every chemical reaction can be pre-
sented as a matrix Diophantine equation Ax = By, where
A and B are matrices of reactants and products, respec-
tively, and x and y are column-vectors of unknown
coefficients. The proof of this theorem is given in.12,13

This theorem is actually the Jones’8 problem founded
by virtue of Crocker’s procedure for balancing chemical
equations14, and from this problem the formalization of
chemistry began. This problem is a milestone in
chemistry and mathematics as well, and just it opened
the door in chemistry to enter a new mathematical
freshness. Jones8 with his problem transferred the
general problem of balancing chemical equations from
the field of chemistry into the field of mathematics and
opened way to solve this problem with mathematical
methods founded on principles of linear algebra.

Before the appearance of this problem, the approach
of balancing chemical equations was intuitive and useful
only for some elementary chemical equations. Now,
some well-known results from the theory of complex
n-dimensional vector spaces15,16, for resolution of
balancing chemical equations will be introduced. Here,
by C is denoted the set of complex numbers and by Cn is
denoted the Euclidian n-dimensional vector space with
complex entries.

Definition 4. A vector space over the field C consists
of a set V of objects called vectors for which the axioms
for vector addition hold

(A1) If u, v � V, then (u + v) � V,
(A2) u + v = v + u, �u, v � V,
(A3) u + (v + w) = (u + v) + w, �u, v, w � V,
(A4) u + 0 = u = 0 + u, �u � V,
(A5) – u + u = 0 = u + (– u), �u � V,

and the axioms for scalar multiplication
(S1) If u � V, then au � V, �a � C,
(S2) a(u + v) = au + av, �u, v � V 	 �a � C,
(S3) (a + b)u = au + bu, �u � V 	 �a,b � C,
(S4) a(bu) = (abu), �u � V 	 �a,b � C,
(S5) 1u = u, �u � V.
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Remark 5. The content of axioms (A1) and (S1) is
described with thes assertion that V is closed under
vector addition and scalar multiplication. The element 0
in axiom A4 is called the zero vector.

Definition 6. If V is a vector space over the field C, a
subset U of V is called a subspace of V if U itself is a
vector space over C, where U uses the vector addition
and scalar multiplication of V.

Definition 7. Let V be a vector space over the field
C, and let vi � V (1 
 i 
 n). Any vector in V of the form
v = a1v1 + a2v2 + … + anvn, where ai � C, (1 
 i 
 n) is
called a linear combination of vi, (1 
 i 
 n).

Definition 8. The vectors v1, v2, …, vn are said to
span or generate V or are said to form a spanning set of
V if V = span{v1, v2, …, vn}. Alternatively, vi � V (1 
 i

 n) span V, if for every vector v � V there exist scalars
ai � C (1 
 i 
 n) such that

v = a1v1 + a2v2 + … + anvn,

i. e., v is a linear combination of

a1v1 + a2v2 + … + anvn.

Remark 9. If V = span{v1, v2, …, vn}, then each
vector v � V can be written as a linear combination of
the vectors v1, v2, …, vn. Spanning sets have the property
that each vector in V has exactly one representation as a
linear combinations of these vectors.

Definition 10. Let V be a vector space over a field C.
The vectors vi � V (1 
 i 
 n) are said to be linearly
independent over C, or simply independent, if it satisfies
the following condition: if

s1v1 + s2v2 + … + snvn = 0,
then

s1 = s2 = … = sn = 0.
Otherwise, the vectors that are not linearly indepen-

dent, are said to be linearly dependent, or simply depen-
dent.

Remark 11. The trivial linear combination of the
vectors vi, (1 
 i 
 n) is the one with every coefficient
zero

0v1 + 0v2 + … + 0vn.

Definition 12. A set of vectors {e1, e2, …, en} is
called a basis of V if it satisfies the following two
conditions

1° e1, e2, …, en are linearly independent,
2° V = span{e1, e2, …, en}.
Definition 13. A vector space V is said to be of finite

dimension n or to be n-dimensional, written dim V = n, if
V contains a basis with n elements.

Definition 14. The vector space {0} is defined to
have dimension 0.

3 PARADOX APPEARANCE

Chemistry as other natural sciences is not immune of
paradoxes. Unlike other natural sciences, in chemistry

paradoxes appeared some time later, and it has only two,
while in other sciences many such contradictions are
met. These paradoxes are well-known Levinthal’s
paradox17: The length of time in which a protein chain
finds its folded state is many orders of magnitude shorter
than it would be if it freely searched all possible
configurations, and Structure-Activity Relationship
(SAR) paradox18: Exceptions to the principle that a small
change in a molecule causes a small change in its
chemical behavior are frequently profound.

However, these paradoxes are not alone and there are
more, but now another will be mentioned, which appears
in the balancing of chemical equations.

In the paper1, the so-called formal balance numbers
(FBN) are introduced, like this: Formal balance numbers
are an aid that may grossly facilitate the problem of
balancing complex redox equations. They may be chosen
as being equal to the traditional values of oxidation
numbers, but not necessarily. An inspection of the redox
equation may suggest the optimal values that are to be
assigned to formal balance numbers. In most cases,
these optimal values ensure that only two elements will
šchange their state’ (i. e. the values of the formal balance
numbers), allowing the use of the oxidation number
technique for balancing equations, in its simplest form.
Just like for oxidation numbers, the algebraic sum of the
formal balance numbers in a molecule/neutral unit is 0,
while in an ion it is equal to its charge (the sum rule).

Promptly, it was detected that the procedure given in1

boils down to using of well-known unconventional
oxidation numbers, which previously were advocated by
Tóth19 and Ludwig20.

Consider this sentence from previous definition: They
may be chosen as being equal to the traditional values of
oxidation numbers, but not necessarily. It is a paradox! If
the formal balance numbers can be the same as oxidation
numbers or not, then the whole definition is illogical.
This definition represents only a contradictory premise,
which does not have any correlation with balancing che-
mical equations. The above definition does not speak
anything about balancing chemical reactions in a chemi-
cal sense of the word, or their solution in a mathematical
sense. In order for a chemical equation to be balanced
the first necessary and sufficient condition is its solvabi-
lity, but the above definition is far from it.

The so-called formal balance numbers, which actu-
ally are the same as the well-known oxidation numbers,
are not any criterion for balancing chemical equations.

If the chemical equation is not formalized, then it
generates only paradoxes. To support this assertion some
ordinary counterexamples will be given.

1° Balancing chemical equations by using of change
in oxidation number procedure has a limited usage! It
holds only for some simple equations. Is it possible to
determine valence of elements in some complex organic
molecules as they are C2952H4664N812O832S8Fe4,
C738H1166N812O203S2Fe, and so on?
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Not yet! For instance, one may show the power-
lessness of that procedure by the following two counter-
examples.

Example 1.
2993 C2952H4664N816O832S8Fe4

+ 9300568 CsClO3 + 408724 Li3PO4

� 11972 Li4Fe(CN)6 + 8763504CO2

+ 2370456CsNO3 + 1178284 LiHCl2

+ 408724 H3PO4 + 6944000 Cs0.998Cl
+ 23944 H2S + 5753504 H2O.

What is the valence of C, N, S and Fe?
Example 2.

249000 C738H1166N812O203S2Fe
+ 1098133767 Pb(NO3)2

+ 46812000 HSiCl3 + 7716178 P2O5

+ 23148534 CoCl2 � 46812000 SiCl3.989

+ 7716178 Co3(PO4)2 + 124500 H2SO4

+ 549616500 Pb1.998O3 + 124500 Fe2(SO4)3

+ 15313500 C12H22O11 + 2398455534 NO2.
The same previous question holds for this counter-

example too. This means, the solution of the above
equations is based on very sophisticated matrix
methods21–23, but in no case on the change in oxidation
number procedure!

As consequence of that, same holds for so-called
formal balance numbers. That procedure is useless to
balance complex chemical equations as it does not give
effects for balancing chemical equations. Still, there are
many causes for arguing why that elementary procedure
is useless, but the above mentioned two counterexamples
are enough to show that it is ineffective.

2° Consider this simple reaction
Example 3.

x1 NaNO2 + x2 FeSO4 + x3 H2SO4

� x4 NaHSO4 + x5 Fe2(SO4)3 + x6 NO.
In the above chemical reaction N and Fe change the

valence, but chemical equation is impossible! Thus, is
the procedure of formal balance numbers useful for
balancing all chemical equations? Obviously, not! Since
it does not have the capability to detect if some chemical
equation is possible or not.

3° Now, one more counterexample will be given,
where that particular procedure of formal balance
numbers is impossible.

For instance, consider this chemical reaction
Example 4.

128147987406 FeSO4

+ 27736706439 PrTlTe3

+ 286573109604 H3PO4

� 128404797000 Fe0.998(H2PO4)2·H2O
+ 13945051000 Tl1.989(SO3)3

+ 13889187000 Pr1.997(SO4)3

+ 83210119317 TeO2 + 14881757802 P2O3

+ 44645273406 H2S.
Is it possible to balance the above chemical equation

by the procedure of formal balance numbers?

Not yet! Since it is not possible to determine the
valence of Fe, Tl and Pr. Then, on what basis the author
of the paper1 states, that his procedure (there called
method) is proposed for fast and easy balancing of
complex redox equations? On top of all, he states that the
procedure (there called method) is probably the fastest of
all possible methods! Really, a very modest statement is
offered by the author, which is wrong, not only because
of today’s current balancing methods view point, but also
from an earlier view point, when that procedure was
published.

Is it a method when somebody can find on every step
counterexamples? Obviously, the answer is negative! It is
merely a picture of the old chemical traditionalism. Or,
maybe it is a lonely case lost in the newest progressive
and contemporary mathematical generalism!

4 PARADOX RESOLUTION BY A NEW
COMPLEX VECTOR METHOD

With the purpose of solution of the paradox, in this
section a new complex vector method of balancing
chemical equations will be developed. This method is
founded on the theory of n-dimensional complex vector
spaces.

Theorem 15. Suppose that chemical equation

x1v1 + x2v2 + … + xnvn = 0, (1)

where vi (1 
 i 
 n) are the molecules and xi (1 
 i 

n) are unknown coefficients is a vector space V over the
field C spanned by the vectors of the molecules vi (1 
 i

 n). If any set of m vectors of the molecules in V is
linearly independent, then m 
 n.

Proof. Let be V = span{v1, v2, …, vn}. We must show
that every set {u1, u2, …, um} of vectors in V with m > n
fails to be linearly independent. This is accomplished by
showing that numbers x1, x2, …, xm can be found, not all
zero, such that

x1u1 + x2u2 + … + xmum = 0.

Since V is spanned by the vectors v1, v2, …, vn, each
vector uj can be expressed as a linear combination of vi

uj = a1jv1 + a2jv2 + … + anjvn.

Substituting these expressions into the preceding
equation gives

0 = x a a xj
j

m

ij
i

n

j ij
j

m

j i
i

n

= = ==
∑ ∑ ∑∑⎛

⎝
⎜ ⎞

⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟

1 1 11
v v

This is certainly the case if each coefficient of vi is
zero, i. e., if

a xij j
j

m

=
∑

1
= 0, (1 
 i 
 n).

This is a system of n equations with m variables x1,
x2, …, xm, and because m > n, it has a nontrivial solution.
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This is what we wanted. Now we shall prove the follow-
ing results.

Theorem 16. Let U be a subset of a vector space V of
the chemical equation (1) over the field C. Then U is a
subspace of V if and only if it satisfies the following
conditions

0 � U, where 0 is the zero vector of V, (2)

If u1, u2 � U, then (u1 + u2) � U, (3)

If u � U, then au � U, �a � C. (4)

Proof. If U is a subspace of V of the chemical
equation (1), it is clear by axioms (A1) and (S1) that the
sum of two vectors in U is again in U and that any scalar
multiple of a vector in U is again in U. In other words, U
is closed under the vector addition and scalar multipli-
cation of V. The converse is also true, i. e., if U is closed
under these operations, then all the other axioms are
automatically satisfied. For instance, axiom (A2) asserts
that holds u1 + u2 = u2 + u1, �u1, u2 � U. This is clear
because the equation is already true in V, and U uses the
same addition as V. Similarly, axioms (A3), (S2), (S3), (S4)
and (S5) hold automatically in U, because they are true in
V. All that remains is to verify axioms (A4) and (A5).

If (2), (3) and (4) hold, then axiom (A4) follows from
(2) and axiom (A5) follows from (4), because – u = (–1)u
lies in U, �u � U. Hence, U is a subspace by the above
discussion. Conversely, if U is a subspace, it is closed
under addition and scalar multiplication and this gives
(3) and (4). If z denotes the zero vector of U, then z = 0z
in U. But, 0z = 0 in V, so 0 = z lies in U. This proves (2).

Remark 17. If U is a subspace of V of the chemical
equation (1) over the field, then the above proof shows
that U and V share the same zero vector. Also, if u � U,
then – u = (–1)u � U, i. e., the negative of a vector in U
is the same as its negative in V.

Proposition 18. If V is any vector space of the che-
mical equation (1) over the field C, then {0} and V are
subspaces of V.

Proof. U = V clearly satisfies the conditions of the
Theorem 16. As to U = {0}, it satisfies the conditions
because 0 + 0 = 0 and a0 = 0, �a � C.

Remark 19. The vector space {0} is called the zero
subspace of V of the chemical equation (1) over the field
C. Since all zero subspaces look alike, we speak of the
zero vector space and denote it by 0. It is the unique
vector space containing just one vector.

Proposition 20. If v is a vector of some molecule in a
vector space V of the chemical equation (1) over the field
C, then the set Cv = {av, �a � C} of all scalar
multiplies of v is a subspace of V.

Proof. Since 0 = 0v, it is clear that 0 lies in Cv. Given
two vectors av and bv in Cv, their sum av + bv = (a + b)v
is also a scalar multiple of v and so lies in Cv. Therefore
Cv is closed under addition. Finally, given av, r(av) =
(ra)v lies in Cv, so Cv is closed under scalar multipli-

cation. Now, if we take into account the Theorem 16,
immediately follows the statement of the proposition.

Theorem 21. Let U = span{v1, v2, …, vn} in a vector
space V of the chemical equation (1) over the field C.
Then,

U is a subspace of V containing each of vi (1 
 i 

n),(5)

U is the smallest subspace containing these vectors in
the sense that any subspace of V that contains each of vi

(1 
 i 
 n), must contain U.(6)
Proof. First we shall proof (5). Clearly

0 = 0v1 + 0v2 + … + 0vn

belongs to U. If

v = a1v1 + a2v2 + … + anvn

and

w = b1v1 + b2v2 + … + bnvn

are two members of U and a � U, then

v + w
= (a1 + b1)v1 + (a2 + b2)v2 + … + (an + bn)vn,

av = (aa1)v1 + (aa2)v2 + … + (aan)vn,

so both v + w and av lie in U. Hence, U is a subspace of
V. It contains each of vi (1 
 i 
 n). For instance,

v2 = 0v1 + 1v2 + 0v3 + … + 0vn.

This proves (5).
Now, we shall prove (6). Let W be subspace of V that

contains each of vi, (1 
 i 
 n). Since W is closed under
scalar multiplication, each of aivi (1 
 i 
 n) lies in W
for any choice of ai (1 
 i 
 n) in C. But, then aivi (1 
 i

 n) lies in W, because W is closed under addition. This
means that W contains every member of U, which proves
(6).

Theorem 22. The intersection of any number of
subspaces of a vector space V of the chemical equation
(1) over the field C is a subspace of V.

Proof. Let {Wi: i � I} be a collection of subspaces of
V and let W = � (Wi: i � I). Since each Wi is a subspace,
then 0 � Wi, �i � I. Thus 0 � W. Assume u, v � W.
Then, u, v � Wi, �i � I. Since each Wi is a subspace,
then (au + bv) � Wi, �i � I. Therefore (au + bv) � W.
Thus W is a subspace of V of the chemical equation (1).

Theorem 23. The union W1  W2 of subspaces of a
vector space V of the chemical equation (1) over the field
C need not be a subspace of V.

Proof. Let V = C2 and let W1 = {(a, 0): a � C} and
W2 = {(0, b): b � C}. That is, W1 is the x-axis and W2 is
the y-axis in C2. Then W1 and W2 are subspaces of V of
the chemical equation (1). Let u = (1, 0) and v = (0, 1).
Then the vectors u and v both belong to the union W1 
W2, but u + v = (1, 1) does not belong to W1  W2. Thus
W1  W2 is not a subspace of V.

Theorem 24. The homogeneous system of linear
equations obtained from the chemical equation (1), in n
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unknowns x1, x2, …, xn over the field C has a solution set
W, which is a subspace of the vector space Cn.

Proof. The system is equivalent to the matrix
equation Ax = 0. Since A0 = 0, the zero vector 0 � W.
Assume u and v are vectors in W, i. e., u and v are
solutions of the matrix equation Ax = 0. Then Au = 0 and
Av = 0. Therefore, �a, b � C, we have A(au + bv) = aAu
+ bAv = a0 + b0 = 0 + 0 = 0. Hence au + bv is a solution
of the matrix equation Ax = 0, i. e., au + bv � W. Thus
W is a subspace of Cn.

Theorem 25. If S is a subset of the vector space V of
the chemical equation (1) over the field C, then

1° the set span{S} is a subspace of V of the chemical
equation (1) over the field C which contains S.

2° span{S} � W, if W is any subspace of V of the
chemical equation (1) over the field C containing S.

Proof. 1°. If S = �, then span{S} = {0}, which is a
subspace of V containing the empty set �. Now assume
S � �. If v � S, then 1v = v � span{S}, therefore S is a
subset of span{S}. Also, span{S} � � because S � �.
Now assume v, w � span{S}; say

v = a1v1 + … + amvm

and

v = b1w1 + … + bnwn,

where vi, wj � S and ai, bj are scalars.
Then

v + w = a1v1 + … + amvm + b1w1 + … + bnwn

and for any scalar k,
kv = k(a1v1 + … + amvm) = ka1v1 + … + kamvm belong to
span{S} because each is a linear combination of vectors
in S. Thus span{S} is a subspace of V of the chemical
equation (1) over the field C which contains S.

2°. If S = �, then any subspace W contains S, and
span{S} = {0} is contained in W. Now assume S � �
and assume vi � S � W (1 � i � m). Then all multiples
aivi � W (1 � i � m) where ai � C, and therefore the
sum (a1v1 + … + amvm) � W. That is, W contains all
linear combinations of elements of S. Consequently,
span{S} � W, as claimed.

Proposition 26. If W is a subspace of V of the che-
mical equation (1) over the field C, then span{W} = W.

Proof. Since W is a subspace of V of the chemical
equation (1) over the field C, W is closed under linear
combinations. Hence, span{W} � W. But W � span{W}.
Both inclusions yield span{W} = W.

Proposition 27. If S is a subspace of V of the che-
mical equation (1) over the field C, then span{span{S}}

= span{S}.
Proof. Since span{S} is a subspace of V, the above

Proposition 26 implies that span{span{S}} = span{S}.
Proposition 28. If S and T are subsets of a vector space

V of the chemical equation (1) over the field C, such that
S � T, then span{S} � span{T}.

Proof. Assume v � span{S}. Then

v = a1u1 + … + arur,

where ai � C, (1 � i � r) and ui � S (1 � i � r). But S
� T, therefore every ui � T (1 � i � r). Thus v �
span{T}. Accordingly, span{S} � span{T}.

Proposition 29. The span{S} is the intersection of all
the subspaces of a vector space V of the chemical
equation (1) over the field C which contains S.

Proof. Let {Wi} be the collection of all subspaces of a
vector space V of the chemical equation (1) containing S,
and let W = � Wi. Since each Wi is a subspace of V, the
set W is a subspace of V. Also, since each Wi contains S,
the intersection W contains S. Hence span{S} � W. On
the other hand, span{S} is a subspace of V containing S.
So span{S} = Wk for some k. Then W � Wk = span{S}.
Both inclusions give span{S} = W.

Proposition 30. If span{S} = span{S 	 {0}}, then
one may delete the zero vector from any spanning set.

Proof. By Proposition 28, span{S} � span{S 	 {0}}.
Assume v � span{S 	 {0}}, say

v = a1u1 + … + anun + b⋅0

where ai, b � C (1 � i � n) and ui � S (1 � i � n).
Then v = a1u1 + … + anun, and so v � span{S}. Thus

span{S 	 {0}} � span{S}. Both inclusions give span{S}

= span{S 	 {0}}.
Proposition 31. If the vectors vi � V (1 � i � n)

span a vector space V of the chemical equation (1) over
the field C, then for any vector w � V, the vectors w, vi

(1 � i � n) span V.
Proof. Let v � V. Since the vi (1 � i � n) span V,

there exist scalars ai (1 � i � n) such that v = a1v1 + … +
anvn + 0w. Thus w, vi (1 � i � n) span V.

Proposition 32. If vi (1 � i � n) span a vector space
V of the chemical equation (1) over the field C, and for k
> 1, the vector vk is a linear combination of the pre-
ceding vectors vi (1 � i � k – 1), then vi without vk span
V, i. e., span{v1, v2, …, vk–1, vk+1, …, vn} = V.

Proof. Let v � V. Since the vi (1 � i � n) span V,
there exist scalars ai (1 � i � n) such that

v = a1v1 + … + anvn.

Since vk is a linear combination of vi (1 � i � k – 1),
there exist scalars bi (1 � i � k – 1) such that

vk = b1v1 + … + ak–1vk–1.

Thus

v = a1v1 + … + akvk + … + anvn

= a1v1 + … + ak(b1v1 + … + bk–1vk–1) + … + anvn

= (a1 + akb1)v1 + … + (ak–1 + akbk–1)vk–1

+ ak+1vk+1 + … + anvn.

Therefore,

span{v1, v2, …, vk–1, vk+1, …, vn } = V.
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Proposition 33. If Wi, (1 � i � k) are subspaces of a
vector space V of the chemical equation (1) over the field
C, for which W1 � W2 � … � Wk and

W = W1 	 W2 	 … 	 Wk,

then W is a subspace of V.
Proof. The zero vector 0 � W1, hence 0 � W.

Assume u, v � W. Then, there exist j1 and j2 such that u
� Wj1 and v � Wj2. Let j = max(j1, j2). Then Wj1 � Wj

and Wj2 � W, and so u, v � Wj. But Wj is a subspace.
Therefore (u + v) � Wj and for any scalar s the multiple
su � Wj. Since Wj � W, we have (u + v), su � W. Thus
W is a subspace of V.

Proposition 34. If Wi (1 � i � k) are subspaces of a
vector space V of the chemical equation (1) over the field
C and Si (1 � i � k) span Wi (1 � i � k), then S = S1 	
S2 	 … 	 Sk spans W.

Proof. Let v � W. Then there exists j such that v �
Wj. Then v � span{Sj} � span{S}. Therefore W �
span{S}. But S � W and W is a subspace. Hence
span{S} � W. Both inclusions give span{S} = W, i. e., S
spans W.

Theorem 35. Let {v1, v2, …, vn} be a linearly inde-
pendent set of vectors in a vector space V of the chemical
equation (1) over the field C, then the following condi-
tions

1° {v, v1, v2, …, vn} is a linearly independent set,
2° v does not lie in {v1, v2, …, vn},

are equivalent for a vector v in V.
Proof. Assume 1° is true and assume, if possible, that

v lies in span{v1, v2, …, vn}, say,

v = a1v1 + … + anvn.

Then

v – a1v1 + … + anvn = 0

is a nontrivial linear combination, contrary to 1°. So 1°
implies 2°. Conversely, assume that 2° holds and assume
that

av + a1v1 + … + anvn = 0.

If a � 0, then

v = (–a1/a)v1 + … + (–an/a)vn,

contrary to 2°. So a = 0 and

a1v1 + … + anvn = 0.

This implies that

a1 = … = an = 0,

because the set {v1, v2, …, vn} is linearly independent.
By this is proved that 2° implies 1°.

Proposition 36. Let {v1, v2, …, vn} be linearly
independent in a vector space V of the chemical equation
(1) over the field C, then {a1v1, a2v2, …, anvn}, such that
the numbers ai (1 � i � n) are all nonzero, is also
linearly independent.

Proof. Suppose a linear combination of the new set
vanishes

s1(a1v1) + s2(a2v2) + … + sn(anvn) = 0,

where si (1 � i � n) lie in C.
Then

s1a1 = s2a2 = … = snan = 0

by the linear independence of {v1, v2, …, vn}. The fact
that each ai � 0 (1 � i � n) now implies that s1 = s2 =
… = sn = 0.

Proposition 37. No linearly independent set of vec-
tors of molecules can contain the zero vector.

Proof. The set {0, v1, v2, …, vn} cannot be linearly
independent, because

10 + 0v1 + … + 0vn = 0,

is a nontrivial linear combination that vanishes.
Theorem 38. A set {v1, v2, …, vn} of vectors of mole-

cules in a vector space V of the chemical equation (1)
over the field C is linearly dependent if and only if some
vi is a linear combination of the others.

Proof. Assume that {v1, v2, …, vn} is linearly depen-
dent. Then, some nontrivial linear combination vanishes,
i. e.,

a1v1 + a2v2 + … + anvn = 0,

where some coefficient is not zero. Suppose a1 � 0.
Then

v1 = (–a2/a1)v2 + … + (–an/a1)vn,

gives v1 as a linear combination of the others. In gene-
ral, if ai � 0, then a similar argument expresses vi as
linear combination of the others.

Conversely, suppose one of the vectors is a linear
combination of the others, i. e.,

v1 = a2v2 + … + anvn.

Then, the nontrivial linear combination 1v1 – a2v2 –
… – anvn equals zero, so the set {v1, v2, …, vn} is not
linearly independent, i. e., it is linearly dependent. A
similar argument works if any vi (1 � i � n) is a linear
combinations of the others.

Theorem 39. Let V � 0 be a vector space of the che-
mical equation (1) over the field C, then

1° each set of linearly independent vectors is a part
of a basis of V,

2° each spanning set V contains a basis of V,
3° V has a basis and dim V � n.
Proof. 1° Really, if V is a vector space that is spanned

by a finite number of vectors, we claim that any linearly
independent subset S = {v1, v2, …, vk} of V is contained
in a basis of V. This is certainly true if V = span{S}

because then S is itself a basis of V. Otherwise, choose
vk+1 outside span{S}. Then S1 = {v1, v2, …, vk, vk+1} is
linearly independent by Theorem 35. If V = span{S1},
then S1 is the desired basis containing S. If not, choose
vk+2 outside span{v1, v2, …, vk, vk+1} so that S2 = {v1, v2,
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…, vk, vk+1, vk+2} is linearly independent. Continue this
process. Either a basis is reached at some stage or, if not,
arbitrary large independent sets are found in V. But this
later possibility cannot occur by the Theorem 15 because
V is spanned by a finite number of vectors.

2° Let V = span{v1, v2, …, vm}, where (as V � 0) we
may assume that each vi � 0. If {v1, v2, …, vm} is linearly
independent, it is itself a basis and we are finished. If
not, then according to the Theorem 38, one of these
vectors lies in the span of the others. Relabeling if
necessary, it is assumed that v1 lies in span{v2, …, vm} so
that V = span{v2, …, vm}. Now repeat the argument. If
the set {v2, …, vm} is linearly independent, we are
finished. If not, we have (after possible relabeling) V =
span{v3, …, vm}. Continue this process and if a basis is
encountered at some stage, we are finished. If not, we
ultimately reach V = span{vm}. But then {vm} is a basis
because vm � 0 (V � 0).

3° V has a spanning set of n vectors, one of which is
nonzero because V � 0. Hence 3° follows from 2°.

Corollary 40. A nonzero vector space V of the
chemical equation (1) over the field C is finite dimen-
sional only if it can be spanned by finitely many vectors.

Theorem 41. Let V be a vector space of the chemical
equation (1) over the field C and dim V = n > 0, then

1° no set of more than n vectors in V can be linearly
independent,

2° no set of fewer than n vectors can span V.
Proof. V can be spanned by n vectors (any basis) so

1° restates the Theorem 15. But the n basis vectors are
also linearly independent, so no spanning set can have
fewer than n vectors, again by Theorem 15. This gives
2°.

Theorem 42. Let V be a vector space of the chemical
equation (1) over the field C and dim V = n > 0, then

1° any set of n linearly independent vectors in V is a
basis (that is, it necessarily spans V),

2° any spanning set of n nonzero vectors in V is a
basis (that is, they are necessarily linearly independent).

Proof. 1° If the n independent vectors do not span V,
they are a part of a basis of more than n vectors by pro-
perty 1° of the Theorem 39. This contradicts Theorem
41.

2° If the n vectors in a spanning set are not linearly
independent, they contain a basis of fewer than n vectors
by property 2° of Theorem 39, contradicting Theorem
41.

Theorem 43. Let V be a vector space of dimension n
of the chemical equation (1) over the field C and let U
and W denote subspaces of V, then

1° U is finite dimensional and dim U � n,
2° any basis of U is a part of a basis for V,
3° if U � W and dim U = dimW, then U = W.
Proof. 1° If U = 0, dimU = 0 by Definition 14. So

assume U � 0 and choose u1 � 0 in U. If U = span{u1},
then dimU = 1. If U � span{u1}, choose u2 in U outside

span{u1}. Then {u1, u2}, is linearly independent by
Theorem 35. If U = span{u1, u2}, then dimU = 2. If not,
repeat the process to find u3 in U such that {u1, u2, u3} is
linearly independent and continue in this way. The pro-
cess must terminate because the space V (having dimen-
sion n) cannot contain more than n independent vectors.
Therefore U has a basis of at most n vectors, proving 1°.

2° This follows from 1° and Theorem 39.
3° Let dimU = dimW = m. Then any basis {u1, u2, …,

um} of U is an independent set of m vectors in W and so
is a basis of W by Theorem 42. In particular, {u1, u2, …,
um} spans W so, because it also spans U, W = span{u1,
u2, …, um} = U. By this is proved 3°.

Proposition 44. If U and W are subspaces of a vector
space V of the chemical equation (1) over the field C,
then U + W is a subspace of V.

Proof. Since U and W are subspaces, 0 � U and 0 �
W. Hence 0 = 0 + 0 � U + W. Assume v, v’ � U + W.
Then there exist u, u’ � U and v, v’ � W such that v = u
+ w and v’ = u’ + w’. Since U and W are subspaces, u +
u’ � U and w + w’ � W and for any scalar k, ku � U and
kw � W. Accordingly, v + v’ = (u + w) + (u’ + w’) = (u +
u’) + (w + w’) � U + W and for any scalar k, kv = k(u +
w) = ku + kw � U + W. Thus U + W is a subspace of V.

Proposition 45. If U and W are subspaces of a vector
space V of the chemical equation (1) over the field C,
then U and W are contained in U + W.

Proof. Let u � U. By hypothesis W is a subspace of
V and so 0 � W. Hence u = u + 0 � U + W. Accordingly,
U is contained in U + W. Similarly, W is contained in U +
W. By this the proof is finished.

Proposition 46. If U and W are subspaces of a vector
space V of the chemical equation (1) over the field C,
then U + W is the smallest subspace of V containing U
and V, i. e., U + W = span{U, W}.

Proof. Since U + W is a subspace of V containing
both U and W, it must also contain the linear span of U
and W, i. e., span{U, W} � U + W.

On the other hand, if v � U + W, then v = u + w = 1u
+ 1w, where u � U and w � W. Hence, v is a linear
combination of elements in U 	 W and so belongs to
span{U, W}. Therefore, U + W � span{U, W}. Both
inclusions give us the required result.

Proposition 47. If W is a subspace of a vector space
V of the chemical equation (4. 2) over the field C, then W
+ W = W.

Proof. Since W is a subspace of V, we have that W is
closed under vector addition. Therefore, W + W � W. By
Proposition 45, W � W + W. Thus, W + W = W. By this
the proof is finished.

Proposition 48. If U and W are subspaces of a vector
space V of the chemical equation (1) over the field C,
such that U = span{S} and W = span{T}, then U + W =
span{S 	 T}.

Proof. Since S � U � U + W and T � W � U + W,
we have S 	 T � U + W. Hence span{S 	 T} � U + W.
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Now assume v � U + W. Then v = u + W, where u � U
and w � W. Since U = span{S} and W = span{T}, u =
a1u1 + … + arur and w = b1w1 + … + bsws, where ai, bj �

C, uj � S, and wi � T. Then v = u + w = a1u1 + … + arur

+ b1w1 + … + bsws. Thus, U + W � span{S 	 T}. Both
inclusions yield U + W = span{S 	 T}.

Proposition 49. If U and W are subspaces of a vector
space V of the chemical equation (1) over the field C,
then V = U + W if every v � V can be written in the form
v = u + w, where u � U and w � W.

Proof. Assume, for any v � V, we have v = u + w
where u � U and w � W. Then v � U + W and so V � U
+ W. Since U and V are subspaces of V, we have U + W
� V. Both inclusions imply V = U + W.

By this, in whole is given the skeleton of the complex
vector method.

5 AN APPLICATION OF THE MAIN RESULTS

In this section the above complex vector method will
be applied on some chemical equations for their balanc-
ing. All chemical equations balanced here appear for the
first time in professional literature and they are chosen
with an intention to avoid all well-known to date che-
mical equations which were repeated many times in the
chemical journals for explanation of certain particular
techniques for balancing of some chemical equations
using only atoms with integer oxidation numbers.

1° First, we shall consider the case when the chemi-
cal reaction is infeasible.

Example 5. Consider this chemical reaction

z1 K4Fe(CN)6 + z2 K2S2O3


 z3 CO2 + z4 K2SO4 + z5 NO2 + z6 FeS,
zi � C, (1 � i � 6).

From the following scheme

v 1
=

K
4F

e(
C

N
) 6

v 2
=

K
2S

2O
3

v 3
=

C
O

2

v 4
=

K
2S

O
4

v 5
=

N
O

2

v 6
=

F
eS

K 4 2 0 2 0 0
Fe 1 0 0 0 0 1
C 6 0 1 0 0 0
N 6 0 0 0 1 0
S 0 2 0 1 0 1
O 0 3 2 4 2 0

follows this vector equation

z1v1 + z2v2 = z3v3 + z4v4 + z5v5 + z6v6,

i. e.,

z1 (4, 1, 6, 6, 0, 0)T + z2 (2, 0, 0, 0, 2, 3)T

= z3 (0, 0, 1, 0, 0, 2)T + z4 (2, 0, 0, 0, 1, 4)T

+ z5 (0, 0, 0, 1, 0, 2)T + z6 (0, 1, 0, 0, 1, 0)T,

or

(4z1 + 2z2, z1, 6z1, 6z1, 2z2, 3z2)
T

= (2z4, z6, z3, z5, z4 + z6, 2z3 + 4z4 + 2z5)
T.

From the system of linear equations

4z1 + 2z2 = 2z4,
z1 = z6,

6z1 = z3,
6z1 = z5,

2z2 = z4 + z6,
3z2 = 2z3 + 4z4 + 2z5,

one obtains the contradictions z2 = 3z1 and z2 = 44z1/3,
that means that the system is inconsistent. According to
Definition 8, the vectors v1, v2, v3, v4, v5 and v6 of the
molecules of the chemical reaction (5. 1) do not gene-
rate a vector space V, and according to the Definition 10
they are linearly independent, i. e., we have only a
trivial solution zi = 0, (1 � i � 6), that means that the
chemical reaction is infeasible.

2° Next, we shall consider the case when the chemi-
cal reaction is feasible and it has a unique solution.

This type of chemical equations really is the most
appropriate for study the process of balancing chemical
equations, because it gives an excellent opportunity for
application of the group theory.

At once, we would like to emphasize here, that by
application of groups theory one may determine Sylow
subgroups, conjugacy classes of maximal subgroups,
proper normal subgroups, and so one. The main reason
why we confined ourselves to the next group of calcu-
lations is limitation of the size of the work.

Example 6. Consider this chemical reaction

z1 Fe2(SO4)3 + z2 PrTlTe3 + z3 H3PO4


 z4 Fe0.996(H2PO4)2·H2O + z5 Tl1.987(SO3)3

+ z6 Pr1.998(SO4)3 + z7 Te2O3

+ z8 P2O5 + z9 H2S, zi � C, (1 � i � 9).

According to the scheme given below
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3
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lT
e 3
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O
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P
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v 7
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2O

5

v 9
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H
2S

Fe 2 0 0 0.996 0 0 0 0 0
S 3 0 0 0 3 3 0 0 1
O 12 0 4 9 9 12 3 5 0
Pr 0 1 0 0 0 1.998 0 0 0
Tl 0 1 0 0 1.987 0 0 0 0
Te 0 3 0 0 0 0 2 0 0
H 0 0 3 6 0 0 0 0 2
P 0 0 1 2 0 0 0 2 0
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one obtains the following vector equation
z1v1 + z2v2 + z3v3 = z4v4 + z5v5 + z6v6

+ z7v7 + z8v8 + z9v9,
i. e.,

z1 (2,3,12,0,0,0,0,0)T + z2 (0,0,0,1,1,3,0,0)T

+ z3 (0,0,4,0,0,0,3,1)T

= z4 (0.996,0,9,0,0,0,6,2)T

+ z5 (0,3,9,0,1.987,0,0,0)T

+ z6 (0,3,12,1.998,0,0,0,0)T

+ z7 (0,0,3,0,0,2,0,0)T + z8 (0,0,5,0,0,0,0,2)T

+ z9 (0,1,0,0,0,0,2,0)T,
from where follows this system of linear equations

2z1 = 0.996z4,
3z1 = 3z5 + 3z6 + z9,

12z1 + 4z3 = 9z4 + 9z5 + 12z6 + 3z7 + 5z8,
z2 = 1.998z6,
z2 = 1.987z5,

3z2 = 2z7,
3z3 = 6z4 + 2z9,
z3 = 2z4 + 2z8,

From the last system one obtains the required solu-
tion. This show that the vectors vi (1 � i � 9) generate a
vector space V and they are linearly dependent. The
balanced reaction has this form

17839883133 Fe2(SO4)3

+ 12843034110 PrTlTe3

+ 81542933266 H3PO4


 35823058500 Fe0.996(H2PO4)2·H2O
+ 6463530000 Tl1.987(SO3)3

+ 6427945000 Pr1.998(SO4)3

+ 19264551165 Te2O3

+ 4948408133 P2O5 + 14845224399 H2S.
3° Next, the case when the chemical reaction is non-

unique will be considered, i. e., when it has infinite
number of solutions.

Example 7. Consider double reduction of titanium
dioxide with carbon and chlorine given by the reaction

x1 TiO2 + x2 C + x3 Cl2 
 x4 TiCl4

+ x5 CO + x6 CO2.

This reaction plays an important role in theory of
metallurgical processes, especially in processes of direct
reduction of metal oxides. Sure, that this reaction is not
unique, and there are many other reactions of that kind,
which may to be used for analysis of this particular case.

From the following scheme
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v 3
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v 4
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l 4
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O

v 6
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Ti 1 0 0 1 0 0
O 2 0 0 0 1 2
C 0 1 0 0 1 1
Cl 0 0 2 4 0 0

follows this vector equation

z1v1 + z2v2 + z3v3 = z4v4 + z5v5 + z6v6,

i. e.,

(z1, 2z1, 0, 0)T + (0, 0, z2, 0)T

+ (0, 0, 0, 2z3)
T = (z4, 0, 0, 4z4)

T

+ (0, z5, z5, 0)T + (0, 2z6, z6, 0)T,

or

(z1, 2z1, z2, 2z3)
T

= (z4, z5 + 2z6, z5 + z6, 4z4)
T,

i. e., immediately follows this system of linear equations

z1 = z4,
2z1 = z5 + 2z6,

z2 = z5 + z6,
2z3 = 4z4,

which general solution is z3 = 2z1, z4 = z1, z5 = -2z1 +
2z2, z6 = 2z1 – z2, where z1 and z2 are arbitrary complex
numbers.

Now, balanced general chemical reaction has this
form

z1 TiO2 + z2 C + 2z1 Cl2 
 z1 TiCl4

+ (- 2z1 + 2z2) CO + (2z1 – z2) CO2,
(�z1, z2 � C).

According to the Definition 8, the vectors v1, v2, v3,
v4, v5 and v6 of the molecules of the chemical reaction
generate infinite number of vector spaces V∞, and
according to the Definition 10 they are linearly depen-
dent, i. e., we have an infinite number of solutions (z1, z2,
2z1, z1, – 2z1 + 2z2, 2z1 – z2), (�z1, z2 � C), that means
that the this chemical reaction is non-unique.

6 DISCUSSION

In his previous work22, the author announced a decre-
ase of barren intuitionism from of chemistry and its
substitution by an elegant formalism from one side, and
substitution of the old chemical traditionalism by a new
mathematical generalism, from other side. This
announcement is realized in this work that gives a new
contribution to the theory as well as practice of balancing
chemical equations.

The complex vector method of balancing chemical
equations augmented the research field in chemistry and
made obsolete the old traditional approach, and gave
reliable results for paradox resolution.

By this work will begin consideration of paradoxes in
chemistry as a serious object, and it will increase re-
searchers’ carefulness to avoid appearance of paradoxes.

7 CONCLUSION

The new complex mathematical method of balancing
chemical equations, which was used for the solution of a
paradox is farewell to the chemical tradition, which still
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respects the composers of general chemistry textbooks,
that affirm that chemistry is a science which studies the
structure of substances, how they react when combined
or in contact, and how they behave under different
conditions. These subjects include a great part of the
matter to which chemistry was applied.

In this work the foundation of chemistry is enriched
by one more new topic, and a contribution to a new
formalization of chemistry founded by virtue of a new
complex vector method of balancing chemical equations
is offered. This work opens doors for the next research in
chemistry for diagnostic of paradoxes and their resolu-
tion. It will accelerate the newest mathematical research
in chemistry and it will surmount the barriers hampering
the development of chemistry.

This work is a critical survey that requires changes of
chemical thinking. Hence, it must be distinguished from
the uncritical penetration, in which chemistry itself is
developed sometimes.
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