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Some solid, crystalline materials exhibit the piezoelectric effect, which is very interesting for a variety of technological
applications. Piezoelectric materials are widely used in electromechanical sensors and actuators, such as robotics’ sensors,
actuators, ultrasonic transducers for medical imaging and non-destructive testing. The paper presents the modeling of the
piezoelectric effect in quartz, which is the most widely used material. The basic ideas of the finite-element method (FEM) for
solving the problem of piezoelectric media are presented. All the results are based on linear piezoelectricity, in which the elastic,
piezoelectric, and dielectric coefficients are treated as constants, independent of the magnitude and frequency of the applied
mechanical stresses and electric fields. Starting with the tri-dimensional finite-element method, we have developed a numerical
computational method for a determination of the electrical voltage (the direct piezoelectric effect) and the eigenmodes of
vibration (the inverse piezoelectric effect).
The finite-element method is normally used for solving problems related to macrostructures. The aim of this work is to show
that the finite-element method (FEM) is also a useful and convenient method for solving problems in relation to microstructures.
Here we present the solution to the problem of the piezoelectric effect using the FEM, approaching the problem from the
microstructural point of view.
Key-words: Finite-Element Method, Piezoelectricity, Modeling, Ansys, Quartz, Voltage, Eigenfrequencies

Nekatere kristalini~ne trdne snovi izkazujejo piezoelektri~ni pojav, kar je zelo zanimivo za {tevilne tehnolo{ke aplikacije.
Piezoelektri~ni materiali se ve~inoma rabijo za elektromehanske senzorje in aktuatorje, na primer v robotiki, za ultrazvo~ne
pretvornike pri raznih slikanjih v medicini in neporu{nih presku{anjih. V prispevku obravnavamo modeliranje piezoelektri~nega
pojava v kremenu, ki se najpogosteje uporablja v piezoelektri~nih napravah. Predstavljene so osnove metode kon~nih elementov
(MKE) za numeri~no re{evanje problemov piezoelektri~nih struktur. Vsi prikazani rezultati so bili dobljeni za primer linearnega
piezoelektri~nega pojava, kjer smo obravnavali elasti~ne, piezoelektri~ne in dielektri~ne koeficiente kot konstante, neodvisne od
velikosti in frekvence mehanskih napetosti in elektri~nih polj. Za obravnavo prakti~nih primerov smo MKE aplicirali v treh
dimenzijah in razvili numeri~ne ra~unske postopke za dolo~itev elektri~ne napetosti v odvisnosti od mehanskih napetosti
(neposredni piezoelektri~ni pojav) ter dolo~itev lastnih nihajnih na~inov in frekvenc v primeru inverznega piezoelektri~nega
pojava.
Klju~ne besede: metoda kon~nih elementov, piezoelektri~ni pojav, modeliranje, Ansys, kremen, lastne frekvence

1 INTRODUCTION

The Curie brothers, Jacques and Pierre, were two of
the first people to experiment with common crystals such
as quartz, topaz and sugar cane in the field of piezoelec-
tricity in 1880 to 1882. The next 25 years (1882–1917)
brought a substantial amount of information to be
supported by mathematical calculations. Woldermar
Voigt published a book that dealt with the physics of
crystals, and research work was done in support of the
book in reference to the effects of piezoelectricity such
as, the changing of electrical into mechanical energy and
vice versa. These French workers, along with P.
Langevin, put together a submarine detector made of
steel sheets and quartz.

In this paper we treat the piezoelectric effect in
quartz in a theoretical way; in Section 2 we treat a
mathematical formalization that describes the piezoelec-
tric effect; and in Section 3 we present the modeling of
the piezoelectric effect with the FEM.

The equations of piezoelectricity are sufficiently
complex to preclude a closed form solution for all but
the simplest cases. This is unfortunate since the
piezoelectric effect plays an important role in the field of
crystal physics and transducer technology (sensors and
actuators). Previously, in the past 70 years, variational
principles have been derived that serve as the basis of
approximate solution techniques, such as the powerful
Rayleight-Ritz method. Noteworthy contributions along
these lines were made in the papers of Henno Allik and
Thomas J. R. Hughes.1,2,4,8,16

Although these important developments have opened
the way to wider class problems, they are not sufficiently
general in themselves to be considered a universal
method of piezoelectric analysis. For instance, a
significant deficiency of the Rayleigh-Ritz technique is
the necessity to select a trial function, which often
becomes intractable for complex geometries.

This paper concerns the development of a general
method of electrostatic analysis by incorporating the
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piezoelectric effect in a finite-element method (FEM).
The theory presented is, essentially, an expansion of the
variational principle, which was used before by Holland
and EerNisse1, presented here in a matrix fashion. The
dynamical matrix derived for linear piezoelectricity is
found to be reducible, in form, to the ordinary matrix
equation encountered in structural dynamics.

The electrostatic matrices for a simplex šdisplace-
ment-potential’ for three-dimensional analysis are
presented, thereby illustrating the method.1,2,3,8,16.

The FEM is normally used for solving problems
related to macrostructures. The aim of this work is to
show that the FEM is also a useful and convenient
method for solving problems in relation to micro-
structures. Here we present the solution of the problem
of the piezoelectric effect using the FEM, approaching
the problem from the microstructural point of view.

2 FINITE ELEMENT APPROACH

The study of physical systems frequently results in
partial differential equations, which either cannot be
solved analytically or lack an exact analytic solution due
to the complexity of the boundary condition or domain.
For a realistic and detailed study, a numerical method
must be used to solve the problem. The finite-element
method is often found to be the most appropriate.

The FEM has successfully penetrated many areas,
such as heat transfer, fluid mechanics, electromagnetism,
acoustics and fracture mechanics. Basically, the finite
element method consists of a piecewise application of
classical variational methods to smaller and simpler
sub-domains called finite elements connected to each
other at a finite number of points called nodes.6,15

The fundamental principles of the finite-element
method are:

• The continuum is divided into a finite number of
elements of a geometrically simple shape.

• These elements are connected in a finite number of
nodes.

• The unknowns are the displacements of these nodes.
• Polynomial interpolation functions are chosen to

prescribe the unknown displacement field at each
point of the element related to the corresponding field
values at the nodes.

• The forces applied to the structure are replaced by an
equivalent system of forces applied to the nodes.2

A finite-element formulation accounting for the
coupling between the equations of electrostatics and
elastodynamics becomes necessary when the piezo-
electric material represents a non-negligible fraction of
the entire structure.

Piezoelectric Finite Elements

The constitutive equations of a linear piezoelectric
material3 are:

{ } [ ]{ } [ ] { }T c S e EE T= − (1)

{ } [ ]{ } [ ]{ }D e S ES= − 	 (2)

where { } { }T T T T T T T= 11 22 33 23 13 12 is the vector of the

mechanical stress, { } { }S S S S S S S= 11 22 33 23 13 122 is the

vector of mechanical strains, { } { }E E E E= 1 2 3 is the

vector of electric field, { } { }D D D D= 1 2 3 is the vector of

dielectric displacement, [c]E is the mechanical stiffness
matrix for a constant electric field E, [	]S is the dielec-
tric constant matrix for constant mechanical strain S, [e]

is the piezoelectric coupling coefficients matrix, [e]T is
transposed.

The dynamic equations of a piezoelectric continuum
can be derived from the Hamilton principle, in which the
Lagrangian and the virtual work are properly adapted to
include the electrical contribution as well as the mecha-
nical ones. The potential energy density of a piezoelec-
tric material includes a contribution from the strain
energy and from the electrostatic energy2.

The electric field E is related to electrical potential �
by

E = –grad � (3)

and the mechanical strain S to the mechanical displace-
ment u in the Cartesian coordinates by
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The elastic behavior of piezoelectric media is
governed by Newton’s law:

{ }
{ }

div T
u

t
= �

∂
∂

2

2 (5)

where � is the density of the piezoelectric medium,
whereas the electrical behavior is described by
Maxwell’s equation, taking into account the fact that the
piezoelectric media are insulating (no free volume
charge):

{ }div D = 0 (6)

Equations (1) to (6) constitute a complete set of
differential equations, which can be solved with the
appropriate mechanical (displacement and forces) and
electrical (potential and charge) boundary conditions. An
equivalent description of above boundary-wave problem
is Hamilton’s variational principle as extended to
piezoelectric media,

� ( )L W t
t

t

+ =∫ d
1

2

0 (7)

where the operator � denotes the first-order variation, t1

and t2 define the time interval (all variations must vanish
at t = t1 and t = t2) and the Lagrangian term L is
determined by the energies available in the piezoelectric
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medium and W is the virtual work of the external
mechanical and electrical forces1,2,4.

In the finite-element method the body to be computed
is subdivided into small, discrete elements, the so-called
finite elements. The mechanical displacement u and the
forces f as well as the electrical potential � and the
charge q are determined at the nodes of these elements.
The values of these mechanical and electrical quantities
at an arbitrary position on the element are given by a
linear combination of the polynomial interpolation
function N(x,y,z) and the nodal point values of these
quantities as a coefficient. For an element with n nodes
(nodal coordinates: (xi, yi, zi), (i=1,2,….,n) the
continuous displacement function u(x, y, z) (vector of
order three), for example, can be evaluated from its
discrete nodal point vectors as follows (the quantities
with "0" are the nodal point values of one element):

{ } [ ]{ }u x y z N x y z u x y zu i i i( , , ) ( , , ) ( , , )=
0

(8)

[ ]{ }� �= N x y z u x y zi i i( , , ) ( , , )
0

(9)

where{}u0 is the vector of the nodal point displacement

and [Nu] is the interpolation function for the displace-
ment.

Therefore, the strain field { }S and the electric field
{ }E are related to the nodal displacement and potential by
the shape-function derivatives [Bu] and [B�] defined by,12

{ } [ ]{ }S B uu i=
0

(10)

{ } [ ]{ }E B
i

= − � �
0

(11)

The substitution of the polynomial interpolation
function into (8) yields a set of linear differential
equations that describe a single piezoelectric finite
element.
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0 0 0 0

+ + =� � (12)
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Each element k of the mesh is connected to its
neighboring elements at the global nodes and the
displacement is continuous from one element to the next.

The element degrees of freedom (dof) { }{ }u i i
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Hamilton’s principle (7) must be verified for the
whole structure, which results in (by summation of the
contribution from each finite element).1,2,3,4,8

{ }{ } [ ]{ } [ ]{ } { }M U K U K FUU U
�� + + =F F (14)

[ ]{ } [ ]{ } { }K U K QUF FF F+ = (15)

where the assembled matrices are given by:
[ ] [ ] [ ][ ]M L M Luii

T i
ui= ∑ ( ) – kinematically consistent mass

matrix
[ ] [ ] [ ][ ]K L K Luu uii

T

uu
i

ui= ∑ ( ) – stiffness matrix

[ ] [ ] [ ][ ]K L K LU uii

T

u
i

iF f f= ∑ ( ) – piezoelectric "stiffness"

matrix
[ ] [ ] [ ][ ]K L K LU ii

T

u
i

uiF f f= ∑ ( ) – transponse piezoelectric

"stiffness" matrix
[ ] [ ] [ ][ ]K L K Lii

T i
iFF f ff f= ∑ ( ) – dielectric "stiffness" matrix

{ } [ ] [ ]F L fuii

T

i= ∑ – external forces applied to the

structure
{ } [ ] [ ]Q L qii

T

i= ∑ f – electrical charges brought to the

electrodes
Equations (14) and (15) couple the mechanical va-

riables { }U and the electrical potentials { }F .
Based on this formulation, a piezoelectric finite

element of the type multilayered Mindlin shell and
volume has been derived.2,3

For shell elements, it is assumed that the electric field
and the displacement are uniform across the thickness
and aligned on the normal to the mid-plane. The elec-
trical degrees of freedom are the voltages �k across the
piezoelectric layers; it is assumed that the voltage is
constant over each element (this implies that the finite
element mesh follows the shape of the electrodes). One
electrical degree of freedom of the type voltage per
piezoelectric layer is defined. The assembly takes into
account the equipotentiality condition of the electrodes;
this reduces the number of electric variables to the
number of electrodes.

For volume elements, one additional degree of
freedom of the type electric potential is introduced in
each node of the piezoelectric volume element.

3 MODELING AND RESULTS

As for selecting the element types, the decision is
based on the characteristics of the element type to the
best model that applies to the problem, geometrically
and physically. The material properties are required for
most element types. Depending on the element types, the
material properties may be linear or non linear; isotropic
or anisotropic; and constant temperature-independent or
temperature-dependent.

The starting points of the modeling of the effect of
quartz are the differential equations (14) and (15). These
equations are solved according to the FEM, supported by
the ANSYS software, whereas the program was ADPL
(ANSYS PARAMETRIC DESIGN LANGUAGE).

In this paper, ANSYS was used as a computational
tool for modeling the piezoelectric effect 6,7. For this
purpose, a quartz sample is taken, with a density of
2695 kg/m3 and these dimensions: 90 mm × 120 mm ×
27 mm 5, (Figure 2). We know that the crystal quartz is
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in the form of a hexagonal cylinder surmounted by a
hexagonal pyramid; the faces of the crystal, which may
vary in length and breadth, lie at definite angles with
each other (Figure 1) 9,13. Also, we know that pressure

applied to the crystal parallel to electric axes produces a
piezoelectric polarization in the same direction.

Then, according to the FEM, the meshing is carried
out (the division of the domain of integration into the
finite integrating elements) into 1000 elements with 1331
nodes, Figure 3, and Table 1.

As a finite element, from the library of ANSYS, the
element SOLID 5 is taken, (Figure 4)6,7. The nodes of
this element have degrees of freedom (dof): displace-
ments along the axes x, y, z, the intensity of the electric
potential, the intensity of the magnetic field and tempe-
rature, so this is a multi-field element. Since we are
discussing the linear piezoelectricity, the displacements
(mechanical quantities) and electric potential (electrical
quantities) are of interest to us.

Coupled-fields in the ANSYS software can be treated
on two ways to create a finite-element model: automatic
meshing (also called the direct modeling in ANSYS
terminology) and manual meshing (also called the direct
generation in ANSY terminology). In automatic meshing
the users are required to have a solid model available
prior to the creation of a finite-element model. When
such a solid model becomes available, the users can then
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Figure 2: The quartz sample in the ANSYS window7

Slika 2: Kremenov vzorec v prikaznem oknu programa ANSYS

Figure1: A section of a quartz crystal showing the direction of the
optical axes (AB) and the electrical axes (CD, EF, GH)9

Slika 1: Prerez kremenovega kristala in prikaz smeri opti~nih osi (AB)
in elektri~nih osi (CD, EF, GH)

Table 1: Element and nodes of the sample7

Tabela 1: Matemati~ni opis kon~nih elementov in vozli{~ vzorca

Elements Nodes
LIST ALL SELECTED ELEMENTS. (LIST NODES)

ELEM MAT TYP REL ESY SEC NODES
1 1 1 1 0 1 2 32 41 11 251 333 603 449
2 1 1 1 0 1 32 33 42 41 333 334 684 603
3 1 1 1 0 1 33 34 43 42 334 335 765 684
4 1 1 1 0 1 34 35 44 43 335 336 846 765
5 1 1 1 0 1 35 36 45 44 336 337 927 846
6 1 1 1 0 1 36 37 46 45 337 338 1008 927

995 1 1 1 0 1 926 1007 396 387 197 206 148 149
996 1 1 1 0 1 1007 1088 405 396 206 215 147 148
997 1 1 1 0 1 1088 1169 414 405 215 224 146 147
998 1 1 1 0 1 1169 1250 423 414 224 233 145 146
999 1 1 1 0 1 1250 1331 432 423 233 242 144 145

1000 1 1 1 0 1 1331 530 350 432 242 142 133 144

LIST ALL SELECTED NODES. DSYS = 0
SORT TABLE ON NODE NODE NODE

NODE X Y Z
1 0.00000000000 0.120000000000 0.00000000000
2 0.00000000000 0.00000000000 0.00000000000
3 0.00000000000 0.108000000000 0.00000000000
4 0.00000000000 0.960000000000E-01 0.00000000000
5 0.00000000000 0.840000000000E-01 0.00000000000
6 0.00000000000 0.720000000000E-01 0.00000000000

1326 0.810000000000E-01 0.108000000000 0.108000000000E-01
1327 0.810000000000E-01 0.108000000000 0.135000000000E-01
1328 0.810000000000E-01 0.108000000000 0.162000000000E-01
1329 0.810000000000E-01 0.108000000000 0.189000000000E-01
1330 0.810000000000E-01 0.108000000000 0.216000000000E-01
1331 0.810000000000E-01 0.108000000000 0.243000000000E-01

Figure 3: Meshing of the integral zone for the quartz sample7

Slika 3: Razdelitev integracijskega obmo~ja kremenovega vzorca v
kon~ne elemente



instruct ANSYS to automatically develop a finite-
element model (nodes and elements). The purpose of
using automatic meshing is to relieve the user of the
time-consuming task of building a complicated finite-
element model. In manual meshing, the users need to
define the nodes and elements directly (the development
of a solid model is not required). The manual meshing
method offers complete control over the geometry and
connectivity of every node and every element, as well as
the ease of keeping track of the identities of the nodes
and elements. However, this method may not be as
convenient as the automatic meshing method when
dealing with a complicated finite-element model. It is,
however, possible to combine both methods. In this
paper we used the automatic meshing method. This is
provided by the element SOLID 5, because it has a
degree of freedom of different physical fields. SOLID 5
is a type of element that occupies three-dimensional
space. In addition, it has eight nodes. Each of these
nodes has three displacements along the x, y and z axes,
respectively. The SOLID 5 element is capable of
modeling seven different types of disciplines. When this
particular type of discipline is chosen, ANSYS will only
compute the behaviors of SOLID 5 in the UX, UY, UZ
and VOLT degrees of freedom. It should be noted that
UX, UY and UZ are to indicate the displacements in the
X, Y and Z directions (the X, Y and Z axes are based on
the global coordinate system), while VOLT is to indicate
the difference in the potential energy of the electrical
particles between two locations 6. More precisely, when
we have the action of the mechanical field, we can
automatically obtain the output quantities of the electric
field from the element SOLID 5, and vice versa (the case
of the inverse piezoelectric effect).

Besides the geometry of the sample, the density of
the quartz and the meshing, and introducing the element
SOLID 5, we also have to take into account the other
physical characteristics of quartz, in order to establish
the initial condition for solving the differential equation.
The physical characteristics that determine the solution
of the differential equation are: the stiffness matrix cE,

the dielectric constant matrix 	S, and the piezoelectric
constant matrix e. The values for the above matrices at a
temperature of 25 °C are: 8
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Depending on the geometry of the sample, the
physical characteristics of quartz, we have built a
program to calculate the potential differences as a
function of mechanical force, as well as the intensity of
the deformation of the sample as a function of the
electric voltage. In both cases, the calculations are
carried out along the x axis (the electrical axis of the
quartz). Below, we present the result of modeling for all
cases: when the external mechanical forces compress the
sample, when this force stretches the sample, and when
an electric voltage is applied on the lateral faces of the
sample (the inverse piezoelectric effect).

3.1.1 The direct piezoelectric effect (longitudinal)

The external mechanical forces compress sample
Assume that a mechanical force with intensity F is

acting in the direction of the x-axis, i.e., in the direction
of the normals of the lateral faces of the sample, in the
positions x = 0 and x = 90 mm (in the opposite directions
with the normal’s vector)9. Then, as a result of the action
of this force, the sample will be stressed. The intensity of
this stress is the force on the unit of the surface yz,
Figure 5. As a result of the action of a mechanical force,
we will have the accumulation of a positive and negative
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Figure 4: Geometry of the SOLID 5 6,7

Slika 4: Geometrija elementa SOLID 5 v programu ANSYS

Figure 5: The force acting in the direction of the x axis
Slika 5: Mehanska sila pri stiskanju vzorca v smeri osi x



electrical charge on the opposite lateral faces of the
sample along the x-axis. In other words, we will have the
transformation of mechanical energy into electric energy.
This phenomenon is called the direct piezoelectric effect.

Calculations are carried out for the cases when the
force has the following intensities: 0.1 N, 0.08 N, 0.06
N, 0.04 N and 0.02 N. For these values of the intensities,
we have calculated the potential difference as a function
of depth. But, for practical reasons, we have not taken
into account the fact that the opposite sides of the
electrical poles in the interior of the sample are
neutralized, and as a result the electric charges appear
only on the surface. We made this approximation in
order to prove the dependence of the intensity of the
electrical potential on the depth. In Figure 6 we have
presented the modeling result for two cases.

The main results are the potential difference as a
function of depth and the mechanical force, Figure 7.

According to Figures 6 and 7 we can conclude the
following:

• The intensity of the electrical potential depends on
the external mechanical force. For equal depths the
intensity of the potential increases with the increase
of the force. This dependence is shown in Table 2.

Table 2: Potential difference [mV] as a function of depth [cm] and
mechanical force F(N) – compression case
Tabela 2: Razlika elektri~nega potenciala pri razli~nih silah stiskanja
na robovih in v sredini vzorca

Force F/N
Depth, d/cm / Potential difference, ��/mV

0 4.5 9
0.1 -80.17 0 80.17

0.08 -64.13 0 64.13
0.06 -48.10 0 48.10
0.04 -32.06 0 32.06
0.02 -16.03 0 16.03

• From Table 2 and Figures 6 and 7 we see that
during the compression of the sample, in the interval
from x=0m to x=0.045m, the electrical potential is
negative, whereas on the other side, i.e., from
x=0.045m to x=0.09m the potential is positive. It is
known that the electrical potential is proportional to
the intensity of the electric charge; therefore, we can
conclude that on the upper part of the sample we
have the accumulation of the negative charge and
then, from the half-depth on, there is an accumulation
of the positive charge.

• The accumulated electrical charge depends on the
intensity of the external force and the depth. For a
given force, the electrical charge decreases with an
increase of the depth decrease of the thickness of the
sample along the x axis, whereas for a certain depth,
it increases with the increase of the force.

External mechanical forces stretches the sample

In Figures 8 and 9 are the results of modeling for the
case of stretching. From these figures we can draw the
same conclusions as in the case of the stress of the
sample. The only difference is that by changing the
direction of the mechanical force, the sign of the
electrical potential changes. More precisely, by changing
the direction of the force, the side of the accumulation of
the electric charges will switch. In the case of stretching,
on the upper part of the sample the positive charge will
be accumulated. In the other part of the sample (depth
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Figure 7: Potential difference [mV] as a function of depth [cm] and
mechanical force F/N – compression case
Slika 7: Razlika elektri~nega potenciala v odvisnosti od razdalje pri
razli~nih silah stiskanja

Figure 6: Potential difference as a function of depth and mechanical
force – compression case: (a) F = 0.1 N, (b) F = 0.08 N
Slika 6: Prikaz izra~una razlike elektri~nega potenciala v odvisnosti
od razdalje s programom ANSYS – primer tla~ne sile: (a) F = 0.1 N,
(b) F = 0.08 N



from x=0.045m to x=0.090m) the negative charge will be
accumulated. In both cases at a depth of x=0.045m the
electrical potential is zero, which means in the mid-depth
of the sample the centers of positive electrical charges
will coincide with the centers of the negative electrical
charges and the net charge is zero. As a consequence, the
electrical potential will also be zero.

3.1.2 The direct piezoelectric effect (transversal)

The same phenomena occur in the case when
compression (stress) or stretch is applied along the Y-axis
perpendicular to X. The only difference is that in the case
of stress (compression) along the Y-axis, negative
electrical charges are accumulated on the opposite side
compared to the first case (when the sample was
compressed or stretched in the direction of the X-axis. In
Figure 10, the case for the force 0.1 N is shown, for the
case when the sample is stressed or stretched along the
Y-axis (the so-called transversal piezoelectric effect). The
results presented in Figure 10 show that the net
accumulated electrical charge is not the same (for the
same force in the case of transversal piezoelectricity, the
net accumulated electric charge is greater). This occurs
because in the case of longitudinal piezoelectricity, the
net accumulated electrical charge depends only on the
intensity of the applied force and the thickness of the
sample, whereas in the case of the transversal
piezoelectric effect, this net charge depends on the ratio
between the surface area where the electrical charge is
accumulated and the surface area upon which the force is

exerted,
y z

x z

⋅
⋅

.

3.2 Converse piezoelectric effect

In this section we present the results of the inverse
piezoelectric effect. The question is, what happens if an
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Figure 10: Transversal piezoelectric effect: (a) Case of specimen
compression, (b) Case of specimen stretch
Slika 10: Transverzalni piezoelektri~ni pojav: (a) primer stiskanja in
(b) primer raztezanja

Figure 9: Potential difference [V] as a function of depth and
mechanical force [F] – stretch case
Slika 9: Razlika elektri~nega potenciala v odvisnosti od razdalje pri
razli~nih razteznih silah

Figure 8: Potential difference as a function of depth and mechanical
force – stretch case: (a) F = 0.1 N, (b) F = 0.08N
Slika 8: Prikaz izra~una razlike elektri~nega potenciala v odvisnosti
od razdalje za primer raztezne sile: (a) F = 0.1 N, (b) F = 0.08N



external AC voltage is applied to the sample? From
practice we know that piezoelectric materials (in our
case the crystal is quartz) can change their physical
dimensions with the application of an electric field.
Again, we have taken a sample with the same geometry.
The element for meshing is the same, whereas as the
initial condition we take the voltage applied on the ends
of the x-axis. We have analyzed what happens to a
sample when an electrical voltage applied on it. This
analysis belongs to the so-called modal analysis. With
this analysis we can determine the process of oscillations

of a system10. More precisely, if the system performs
oscillations under the action of an external factor, then
with this analysis we find the proper frequencies of these
oscillations and the shape of the oscillations (deforma-
tions of the system related to the initial undeformed
shape). This part of the analysis is supported by the
ANSYS software, with the condition that during the
solution of the equation, it must be indicated that we are
dealing with the modal type. The degrees of freedom of
the element SOLID 5 provide the transfer from the
quantities of one physical field to another.

In our case, the applied voltage is given as U = 220 V.
Then the element SOLID 5 provides the transfer from
this electrical quantity to the mechanical quantity – the
displacement of the nodes or the deformation of the
sample. The software (ANSYS) automatically calculates
the frequency of the deformation – the oscillations of the
nodes as well as its shape. With this program we can also
find the frequencies of all modes of oscillations and their
shapes for any applied voltage. In Figure 11, the 10 first
modes of oscillations and their shapes are shown.
According to11, the frequencies of the oscillations along
the electric axis x for the quartz take values from 50 Hz
to 200 kHz. From the last presentation we see that the
frequency of oscillations for the 10 first modes take the
values 51 815 Hz to 59 518 Hz. We have proved that the
other modes, for example, the 40th mode, has a frequency
of 93 000 Hz, whereas the 100th mode has the frequency
120 819 Hz. The results also prove that under the voltage
applied, the geometry of the sample is deformed and that
this deformation is caused by oscillations with different
frequencies.

It appears that an improvement in the computational
accuracy of highly ordered modes depends, above all, on
the number of finite elements used, and is not limited by
the use of the finite-element method.

4 CONCLUSIONS

From the results obtained, presented in Figures 5, 6,
7, 8, 9, 10 we can conclude as follows:

• In principle, the differential equation of the coupled-
field (mechanical and electrical) is solvable with the
finite-element method (FEM)

• The commodity of the solution provides the applica-
tion ANSYS.

• Both types of piezoelectric effect can be modeled
with the aid of the FEM package, whereas simula-
tions in ANSYS prove the corrections of the theore-
tical model.

• For the direct piezoelectric effect, we proved that
depending on the intensity of the force and its direc-
tion (stress or stretch), we have the accumulation of
the electrical charges along the electric axis x, which
can be seen in Figures 7 and 9.

• Modal analyses provide an elegant presentation of the
different shapes of oscillations of the sample when an
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Figure 11: The first 10 modes of vibration and their shapes
Slika 11: Prvih 10 lastnih nihajnih na~inov kremenovega vzorca



electric voltage is applied to it. With this analysis we
have proved the inverse piezoelectric effect.

• With the same procedure the piezoelectric effect can
be modeled for other materials, when only the three
characteristic matrices of the material are known.
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