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Evaluation of the existing and new adhesives may in principle be reduced to the theoretical and/or experimental determination
of the material resistance to decohesion as measured by the specific "bonding energy" which must be exceeded via an increase
of the external loads and the resulting locally induced state of stress in order to break the bond between two adhesively joined
deformable materials. This entity is not merely a material property reflecting simply the strength of the adhesive layer, but it
also depends on the elastic moduli of the substrate and the material bonded to it. It is, in fact, a mismatch between the two sets
of elastic constants that has an essential influence on the final value of the specific energy of adhesion.

From the theory provided by Nonlinear Mechanics of Fracture it follows that in order to damage the structural integrity of an
adhesive bond, it suffices to bring a minute pre-existing crack-like defect to a critical local stress level at which a sustained
propagation of fracture becomes thermodynamically feasible – as required by the classic energy balance equation of Griffith.
For most loadings and geometrical configurations of the structural component the initiation of crack extension is tantamount to
the catastrophic failure which involves an unstable separation and cannot be stopped even when the external loads are reduced to
zero.

Intrinsic strength of the bond can also be altered due to variations in the external conditions such as temperature, cyclic loading,
an increased rate of loading or the chemically aggressive environment. The state of stress induced in the neighborhood of the
crack front contributes substantially to the process of decohesion and it can pose a formidable mathematical problem when
fracture propagates within the thin layer of the adhesive placed between two deformable solids with dissimilar elastic and
thermal properties. Frequently, the nature of the problem requires an application of techniques and constitutive equations
associated with highly developed deformation and fracture process. The nonlinearities encountered here are two-fold: (1)
geometrical and (2) physical. The latter involve time-dependent phenomena or plasticity depending on the nature and
mechanical properties of the substances involved, the substrate and the adhesive layer. Thus, viscoelasticity so common for a
number of commercial adhesives and nonelastic deformation dominated by the irreversible plastic components of the strain
tensor requires significant modifications of the constitutive equations. Both viscous and inviscid deformations have to be
accounted for by Nonlinear Viscoelasticity and the Theory of Plasticity.

Independently from these studies it is suggested that the fractographic maps of the fracture surfaces are recorded in the
post-mortem investigation aimed at direct observation of the Wallner lines and river marks imprinted on the fracture surface
while the specimen undergoing fracture is irradiated with ultra-sound waves of various frequencies correlated with the speed of
the shock wave which precedes the front of the propagating decohesion zone.
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Oceno obstoje~ih in novih adhezivov lahko izvr{imo s teoreti~no ali/in eksperimentalno dolo~itvijo odpornosti materiala proti
dekoheziji, ki jo dolo~a specifi~na vezna energija. Ta mora biti prekora~ena z zunanjo obremenitvijo in lokalno induciranim
napetostnim stanjem, ki je potrebno za prelom zveze med dvema adhezivno vezanima preoblikovalnima materialoma. Ta entiteta
ni samo lastnost materiala, ki odra`a trdnost adhezivnega sloja, ampak je odvisna tudi od modula elasti~nosti povezanih
materialov. Razlika med dvema vrstama elasti~nih konstant ima bistven vpliv na kon~no velikost specifi~ne adhezivne energije.

Iz teorije nelinearne mehanike loma izhaja, da se lahko po{koduje integriteta adhezivne zveze, ~e se majhna, `e obstoje~a
razpoka, privede na lokalni kriti~ni nivo napetosti, pri katerem lahko postane propagacija razpoke termodinami~no mogo~a, kot
to zahteva klasi~na Griffith-ova ena~ba o ravnote`ju energije. Za ve~ino obremenitev in geometrijskih oblik strukturne
komponente je iniciacija rasti razpoke predpogoj za katastrofi~ne po{kodbe, zaradi nestabilne propagacije, ki jih ni mogo~e
ustaviti tudi, ko se zunanje breme zmanj{a na ni~.

Specifi~na trdnost zveze se lahko spremeni zaradi spremembe zunanjih pogojev: temperatura, cikli~na obremenitev, pove~ana
hitrost obremenitve ali kemi~no agresivno okolje. Stanje napetosti inducirano v okolici ~ela razpoke bistveno prispeva k procesu
dekohezije in postane zelo te`ak matemati~ni problem, ko razpoka napreduje v tanki plasti adheziva med dvema trdnima
materialoma z razli~nimi elasti~nimi in termi~nimi lastnostmi. ^esto narava problema zahteva uporabo tehnik in konstitutivnih
ena~b povezanih z mo~no razvitimi procesi deformacije in preloma. Pri tem naletimo na dvoje vrst nelinearnosti: geometri~ne in
fizikalne. Zadnje obsegajo tudi ~asovno odvisne fenomene plasti~nosti, ki so odvisne od narave in mehanskih lastnosti snovi,
substrata in plasti adheziva. Zato viskoelasti~nost, zna~ilna za mnoge komercialne adhezive in neelasti~ne deformacije, ki je
odvisna od ireverzibilnih plasti~nih komponent tenzorja deformacije, zahteva pomembno spremembo konstitutivnih ena~b.
Oboje, viskozno in neviskozne deformacije, je potrebno preveriti na nelinearno viskoelasti~nost in teorijo plasti~nosti.

Neodvisno od teh raziskav se priporo~a, da se zbirajo fraktografske mape prelomnih povr{in pri post-mortem preiskavah z
namenom neposrednega opazovanja Wallnerjevih ~rt ter `il, ki nastanejo, ko razpoka napreduje zaradi obsevanja z UZ valovi z
razli~no frekvenco odvisno od valovnega {oka, ki napreduje pred ~elom dekohezije.

Klju~ne besede: adhezivna zveza, mehanika loma, konstitutivne ena~be, model kohezivne razpoke, lastnosti materialov

KOVINE, ZLITINE, TEHNOLOGIJE 33 (1999) 6 505



One of the basic assumptions underlying all cohesive
crack models used in the description of inelastic fracture
has to do with the shape of the cohesive force
distribution. The exact form of this distribution is
unknown, but several very useful clues are provided by
the experimental work on fracture at interfaces, cf.
Hutchinson1. In principle it could be derived from
considerations of the molecular forces exchanged
between two adjacent planes of atoms which are subject
to separation as the leading edge of the crack propagates
along the interface.

We shall return to this point after some mathematical
preliminaries. The condition of finite stress at the tip of
the extended crack, x < a (a visible crack stretches along
x < c), valid for the stress boundary conditions
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If the stress distribution S(x) is normalized by the
reference cohesive stress S0, say S(x) = S0G(x), then Eq.
(2) reduces to
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When the variable x is replaced by x1, x = x1 + c, Eq.
(3) reads
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or, better yet
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Here, λ = x1/a while m is a parameter related to the
crack length c and the length of the extended crack, a = c
+ R, namely, m = c/a. In what follows we shall limit the
considerations to the case of R << c, i.e., for m→1, which
is pertinent for "small scale yield condition" met in all
cases of practical importance in the context of Materials
Science. For this limiting case the integral in Eq. (5) can
be simplified as follows:
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Valuable clues regarding the distribution G(λ) are
gained from studies of fracture occurring at the interface
between two dissimilar materials joined together either
by direct adhesion or by a thin bonding film. In order to
account for the experimental data, two main features are
expected. First, the stress S should reach a maximum at a
certain distance ∆ from the crack front. This maximum
stress Smax may in some cases become substantially
larger than the reference stress S0. It is assumed that Smax

is attained somewhere within the process zone, most
likely at its outer edge, x1 = ∆. To the left of this point S
drops off rapidly to zero to match the boundary condition
of stress-free crack at x1 = 0, while to the right of this
point S falls down again and levels out at the value S0,
toward the end of the cohesive zone, x1= R.

In order to account for such behavior we propose a
strongly nonlinear function composed of a power
function and an exponential. We submit, therefore, a
two-parameter distribution function of this form
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in where α and n are yet undetermined parameters. This
function is now substituted into Eq. (6), yielding
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Note that for m→1, the expression (m - 1) can be
replaced by R/c, while the integral in Eq. (8) can be cast
into a closed form, cf. 2
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Here the standard notation for the gamma function
(Γ ) and the hypergeometric function (1F1) is used, cf. 3.
Physical interpretation of the integral (9) leads to the
energy dissipated within the cohesive zone, hence the
symbol W. Finally, combining Eqs. (8) and (9) allows us
to define the length of the cohesive zone:
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When KI attains its critical level KIc, the Eq. (10)
predicts the characteristic microstructural length
parameter, Rmax = (π/2W2)(KIc/S0)2.

The primary conclusions of this contribution can be
summarized as follows
1. A generalization has been proposed that encompasses

all previous cohesive crack models and provides a
platform for novel investigations of the influence of
the structured nature of the nonlinear zone on the
early stages of fracture;
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2. By proper choice of parameters α and n we are able
to quantify the inner structure of the cohesive zone,
the so-called "fine structure", which accounts for the
existence of the small process zone of size ∆
embedded within the larger R-zone;

3. Microstructure of material is now represented by
properties such as the overstress factor, k = Smax/S0

and the ductility parameter, ρ = Rini/∆, in which Rini

denotes the threshold value of R associated with the
onset of fracture;
For a given k and ρ, the parameters that determine

the shape of the S-distribution, α and n, can be evaluated
explicitly by matching the ratio Smax/S0 = (n/α)nexp(α - n)
with the given overstress factor, k. Solving the equation
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for the coefficient α, we obtain
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Since α/n represents the reciprocal of the coordinate
λ at which the maximum in S occurs, we have
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Combining it with Eq. (12) results in the
transcendental equation
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For any given input set of data, such as specified ρ
and k, the other two variables, α and n, can be solved for
(numerically, of course). Since the input parameters are
deduced from the microstructural data, and can be
measured experimentally, the fine structure
characteristics α and n are not accessible to an
experiment, we have provided a link between the two
sets of parameters pertaining to micro-level of fracture.
The next step, of course, is to evaluate the macro–level
entities such as W and R. Our model makes these
calculations possible, too. And thus, we have indeed

constructed a bridge between the micro- and
macro-scales of fracture representation.

To illustrate this statement, we set ρ = 10 and k = 5,
and then using the equations written above, we obtain n
= 0.2403 and α = ρn = 2.4031, while the nondimensional
dissipation of energy for those microstructural input data
is W (α, n) = 4.4805, and the length of the nonlinear
zone is Rmax = 0.3506(KIc/S0)2.

Finally, Fig. 1 shows the predicted shape of the
G-function, which represents a nondimensional cohesive
force distribution within the R-zone for the choice of
micro-parameters used in our sample calculation.
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Figure 1: Distribution of the cohesive force S(λ)/So within the R-zone
for the following meso-structural parameters:
- ductility index, ρ = 10, and
- overstress factor, k = 5
Slika 1: Porazdelitev kohezivne sile S(λ)/So v R zoni za naslednje
mezo – strukturne parametre:
- index duktilnosti ρ = 10 in
- faktor prenapetosti k = 5


